首页  技术文章  椭偏仪在位表征电化学沉积的系统搭建(十七)- 系统误差与醋酸铅实验

椭偏仪在位表征电化学沉积的系统搭建(十七)- 系统误差与醋酸铅实验

发布时间:2024-04-10 13:54:31 浏览量:177 作者:Alex

摘要

制作完成电解池后进行了初步的实验,一是对该池体系统误差进行探索实验,二是不同浓度醋酸铅测试,后zui是Pb薄膜的沉积实验。

正文


椭偏仪在位表征电化学沉积的系统搭建(十七)- 系统误差与醋酸铅实验


3.2.6实验测试与分析


3.2.6.1系统误差实验


为了进一步分析该池体的实验可行性,用去离子水、1M醋酸钠和15mM、20mM的醋酸铅作为溶液,Au/Si为基底,在电解池中进行多次椭偏仪测量,测量入射角为65°,波长范围为300nm到800nm,步长为10nm。结果如图3-8所示。


图3-8(a,b)为去离子水条件下测试得到的Au基底在池体中的Psi和Delta,整体上看不同测试次数得到的图谱随着波长的变化趋势一致,但是在数值上有所偏移,向上或向下移动。图3-8(c,d)为1M醋酸钠和15mM的醋酸铅作为溶液测试得到的池体中Au基底的Psi和Delta,整体上看不同测试次数得到的图谱随着波长的变化趋势一致,且数值上基本一样。图3-8(e,f)为1M醋酸钠和20mM的醋酸铅作为溶液测试得到的池体中Au基底的Psi和Delta,整体上看不同测试次数得到的图谱随着波长的变化趋势一致,数值上和去离子水的一样,有上下移动,且在测试过程中存在与15mM醋酸铅相同的波动。


从上述图谱变化中可以看出,在同种溶液中,以同样的测试条件测量,得到的不同次数的图谱在整体趋势上一致的同时会存在上下移动,且在测试过程中可能会出现微扰。而产生以上变化的原因一是测量系统本身带来,二是测试过程中溶液纹动带来。故而该池体在测试过程中出现的系统误差在后续实验分析中至关重要。


图3-8去离子水(a,b)以及不同浓度醋酸铅(b,c)15m和(b,d)20mM椭偏参数Psi和Delta


3.2.6.2不同浓度醋酸铅测试


薄膜沉积的在位监测涉及到溶液和电极表面及固液两相界面,而在电化学沉积时固液界面附近会存在溶液浓度差,即存在扩散层。由绪论部分溶液对光学常数影响的推导知,不同浓度的溶液对光的吸收等光学常数都不同,所以在具体监测之前要进行该池体下扩散层的存在对测试结果影响的分析。由于扩散层溶液浓度变化范围是0到本体溶液浓度,为了实现对扩散层存在影响的定性分析,可以把扩散层简化为几个不同浓度的溶液,这样测试就变得简单可行。


实验还是用醋酸钠和醋酸铅溶液,测试入射角为70°,波长范围300nm到800nm。首先准备好去离子水以及配制好不同浓度的溶液,1M醋酸钠以及1M醋酸钠加5mM、10mM、15mM、20mM的醋酸铅。然后以Au/Si为基底置于池体中进行椭偏测量。


图3-9是不同溶液浓度下测试得到的椭偏参数Psi和Delta随波长的变化图,从图中可以看到整体上不同浓度溶液得到随波长变化的整体趋势是一样的,但是在数值上有微小差别。


图3-9不同浓度醋酸铅测试结果


上述呈现出的椭偏图谱随浓度变化,不同浓度溶液随波长的变化趋势一致,但是会存在数值上的波动。对比3.2.2节所测试结果分析知,该处呈现的图谱随浓度的变化小于同一浓度不同次数测试的变化,故而在该池体测试的系统误差范围内,可以不考虑溶液浓度对椭偏参数所带来的影响。而本实验扩散层厚度中溶液浓度变化不会超过本体溶液浓度,所以在后续的椭偏在位监测薄膜沉积的过程中就可不考虑扩散层中溶液浓度变化给测试带来的影响。


通过上述实验分析知该池体在醋酸钠和醋酸铅溶液中对基底进行椭偏仪测试是可行的,可以用该池体对薄膜沉积进行实验。


了解更多椭偏仪详情,请访问上海昊量光电的官方网页:

https://www.auniontech.com/three-level-56.html


更多详情请联系昊量光电/欢迎直接联系昊量光电

关于昊量光电:

上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。


相关文献:

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陈篮,周岩. 膜厚度测量的椭偏仪法原理分析[J]. 大学物理实验, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦杨.椭偏仪在位表征电化学沉积的系统搭建.云南大学说是论文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李广立. 氧化亚铜薄膜的制备及其光电性能研究[D]. 西南交通大学, 2016.

[25] 董金矿. 氧化亚铜薄膜的制备及其光催化性能的研究[D]. 安徽建筑大学, 2014.

[26] 张桢. 氧化亚铜薄膜的电化学制备及其光催化和光电性能的研究[D]. 上海交通大学材料科 学与工程学院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的电化学制备及其光电化学性能的研究[D]. 云南大学物理与天文学院,2019.

阅读延伸

展示全部  up