首页  技术文章  调Q激光与各种激光调Q技术介绍

调Q激光与各种激光调Q技术介绍

发布时间:2020-05-15 11:18:45 浏览量:6575

摘要

每次激光技术的革新,都会带来行业的进步。如何将激光器的功率做得更大,一直是激光科学家努力的方向。讲到提高激光器的峰值功

率、单色功率,就不得不提激光调Q技术。比较常见的有控制反射损耗的电光调Q,控制吸收损耗的可饱和吸收体调Q和控制衍射损耗

的声光调Q。

正文


正文:激光问世以来,因其“三好一高”的特性,被誉为是“最快的刀”, “最准的尺”,使其在材料加工、医学、科研等领域都得

到广泛的应用。同时,为了获得更高的加工速率,更好的加工效果以及更极端的实验环境,人们对激光器的能力,不断提出新的要求。

如何将激光器的峰值功率做得更大,一直是激光器发展的迫切需要,说到这里,也就不得不提到激光的调Q技术

 


激光器的Q值描述了激光器谐振腔的品质,其值可由以下公式计算获得:

Q=2πv0W/(δWc/nL)=2πnL/δλ0


其中W为腔内存储的能量,δ表示光波在谐振腔中的单程损耗,n为折射率,L为腔长,λ0=c/v0为真空中的波长。可见Q值与损耗因子

δ成反比。调Q即改变谐振腔的损耗因子,比较常见的有控制反射损耗的电光调Q,控制衍射损耗的声光调Q和控制吸收损耗的可饱和

吸收体调Q。


电光调Q技术:

电光调Q技术的原理是普克尔斯(Pockels)效应——即一级电光效应,电光晶体双折射效应与外加电场强度成正比,偏振光经过电

光晶体后,偏振面旋转的角度与晶体长度和两侧所加电压的乘积成正比。电光调Q激光器的原理图如下所示:

目前普遍应用的电光晶体有KD*P(磷酸二氢钾(KDP),磷酸二氘钾(DKDP))晶体和LN(铌酸锂LiNbO3)晶体。当线偏振光入射到电场

中的晶体表面,分解成初相位相同的左旋和右旋两束圆偏振光。在晶体中,两束光线的传播速度不同。即从晶体中出射时,两束光线存

在相位差。则合成的线偏振光的偏振面已经和入射光的偏振面存在相位差,称为旋光效应。

其中的起偏器由格兰-付克棱镜构成。格兰-付克棱镜(方解石空气间隙棱镜)是由两块方解石直角棱镜拼接而成,由于晶体对于不同偏

振方向的光线的折射率不同,所以偏振方向不同的光线的全反射临界角不同。棱镜组允许特定偏振方向的光线,其余的被反射。当我们

在电光晶体两侧施加电压时,可以改变通过晶体的光线的偏振方向,从而选择性的让光线出射,起到光电开关的作用。

当线偏振光经过一次电光晶体后,其偏振面旋转45°,经反射镜反射后再次经过电光晶体,此时与入射光的偏振方向相差90°,即π/2。

此时反射光被棱镜全反射,而不进入谐振腔。当工作物质的粒子数反转达到饱和状态时,改变晶体两端电压,使出射光偏振面不发生偏

转,振荡条件建立。


声光调Q技术:

声光晶体在超声场中对入射光产生衍射,使光线偏离出谐振腔,Q值增大而不能形成激光振荡。直到在泵浦激励下,工作物质的反转粒

子数不断累积达到饱和。此时撤掉超声场,Q值降低,激光振荡条件迅速建立。激光出射,产生巨脉冲。


饱和吸收体调Q:

在谐振腔内插入可饱和吸收染料,染料吸收工作物质发出的荧光。开始时染料对光子的吸收率很高,系统Q值很低,自激振荡不能发

生,工作物资的反转粒子数在泵浦激励下不断累积。当染料吸收的光子累计到一定程度后,染料会突然变得透明,此时Q值急剧减小

,从而实现激光振荡。


调Q激光器已经被广泛的应用在医疗,工业和科研领域,其他提高激光器峰值功率的方法还有锁模技术,啁啾放大技术……每次新技术

的使用,都使得激光器的发展迈向新的台阶。激光技术的发展必将给各类技术、工艺的实现带来新的方法和思路。


您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532.