展示全部
2KHz(500us)-纯相位液晶空间光调制器(SLM)
点衍射激光干涉仪-大口径(≥700mm)高精度(≤0.6nm RMS)无出口限制
激光模式转换器
1060-1600nm窄带可调谐光纤滤波器
平场聚焦镜(f-theta镜)
λ/1000超高精度激光干涉仪!
超分辨光学微球显微镜(SMAL)
BOA超短脉冲脉宽压缩器-群延迟色散补偿
声光调制器(AOM)
M522 自动单色仪
ARS宏观角分辨光谱系统
光纤耦合微透镜阵列
Wasatch Photonics透射式体相全息衍射光栅(VPH)
超高衍射效率全息光栅-(高灵敏度光谱仪用)
偏振不敏感(偏振无关)光栅-通信用
Wasatch Photonics光学相干断层扫描(OCT)用体全息光栅
光学分辨率
衍射光栅色散计算
高分辨率,高衍射效率,高填充因子,高损伤阈值,高灰度等级(4096/12bits),低相位纹波(0.5-1%)等性能著称。 02实验光路 A:532nm 连续激光器;B:半波片;C:望远系统;D;P1920-0532液晶空间光调制器;E:f=75mm透镜;F:Basler aCA1920相机(ψ=10°) 03实验结果 L=1 加载灰度图 L=1 近场测试图L=8 加载灰度图 L=8 近场测试图 L=16 加载灰度图 L=16 近场测试图 L=32 加载灰度图 L=32 近场测试图 L=150加载灰度图 L=150近场测试图 L=300加载灰 ...
情况下也能以衍射极限成像的话,就能用仪器顺利看到视网膜上的感光细胞。但人眼由于角膜及晶状体结构的不完美使经过的光线产生波前误差,而且其大小和形式因人因时而变,不可能采用施加固定校正的方法解决。这使得一般的眼科成像系统无法达到衍射极限,也就无法实现高分辨率的眼科成像,自适应光学正好可以解决这样的问题。通过眼底视网膜图像,可以发现多种人体疾病病变信息,如心脑血管及内分泌失调,正常人和老年性黄斑,中心性浆液性脉络视网膜病变等;但人眼象差除离焦、像散外,还包含高阶像差,降低了成像分辨力,传统的眼科测量技术无法克服这些高阶像差,而自适应光学技术用于人眼视网膜成像系统,则可以获得更加清晰的眼底视网膜图像。 ...
现,他们使用衍射光学元件(DOE)将准直的激光束分成多个独立的光束,通过强会聚透镜聚焦后形成多光镊。构建全息光镊的关键是根据实际需要选择合适的全息元件。传统生成全息元件的方法是利用相干光干涉制作的,其缺点是所拍摄的全息元件存在衍射效率低、制作费时以及通用性差等,因而它在全息光镊中并没有得到广泛的应用。目前全息光镊的全息元件多由空间光调制器(SLM)形成。常见的空间光调制器有液晶空间光调制器、磁光空间光调制器、数字微镜阵列(DMD)、多量子阱空间光调制器以及声光调制器等。还可以用紫外光刻来制作特定的衍射光学元件来调制光场。现在用的较多的是由计算机寻址的液晶空间光调制器实现全息元件,通过改变全息元 ...
物镜得到接近衍射极限的目标像。四波剪切干涉技术原理:剪切干涉技术基本原理是将待检测的激光波前分成两束,其中的一束相对于另一束横向产生一些错位,两束错位的光波各自保持完整的待测波前信息,相互叠合后,产生干涉现象,CCD/CMOS相机会接收干涉图样,进行相应的计算分析,从而利用傅立叶变换的相关计算,分析出待测波前的相位分布,以及强度分布等。基于干涉条纹的疏密度敏感于波前的斜率,因此波前传感器在探测波前的偏离范围较传统的哈特曼传感器具有更大的优越性。波前传感器的典型应用光在传输的过程中会经过不同的介质,不同的介质由于其构成物质的分布不均匀,从而导致光的波前产生各种各样的变化,自适应系统便应运而生。作 ...
VPHG) 衍射光栅技术的光谱仪相对于传统的刻划光栅,具有颜色效率高,受偏振影响小的特点,同时牢固耐用,是理想的高端光谱和光通讯仪器,其透过率高达90%,比传统的反射式光栅大30%。3,多种测量模式Nanobase公司的拉曼光谱系统不光可用于拉曼成像,还可用于荧光成像,光电流成像。 拉曼 荧光 光电流4,高性价比目前市面上拉曼成像光谱设备价格均高于100万人民币,韩国Nanobase公司的激光扫描拉曼成像设备价格折合人民币约为50万人民币,价格远低于同类产品。Nanobase在国内的独家代理是上海昊量光电设备有限公司,上海昊量光电设备有限公司是光学器件,激光,光谱等光电领域的 ...
0Hz),高衍射效率,高填充因子,高损伤阈值等性能著称。02 空间分辨率液晶空间光调制器(LCos)是由二维的像素阵列组成的,Meadowlark Optics公司可以提供的空间分辨率有1920x1152、512x512、1x12288等系列。其中 1920x1152系列SLM的像元大小为9.0um;512x512系列SLM的像元大小为15um和24um;、1x12288系列SLM的像元大小为1.0um。液晶空间光调制器的空间分辨率越高,像元越小,则成像越清晰,成像质量越好。激光通信、自适应光学、光束控制等领域则对空间分辨率要求不高。03 衍射效率液晶空间光调制器(LCos)的效率目前市面上的 ...
m。在0,π衍射图中,最大光栅周期为2个像素,入射波长为940 nm,SLM可以转向的最大角度为3.36°。取物镜焦距为7.2 mm,最大横向位移为零点附近±423μm,或x和y的总横向位移为847μm。这超出了目标可以成像的视野,同时保持目标的全部NA,因此不会牺牲激励约束。此外,通过傅里叶变换,现在可以在样本上创建1152 x 1152个焦点,这只能将目标可解析的焦点利用不到1.16倍。表1总结了1920 x 1152像素SLM和512 x 512像素SLM的客观规格,光学系统,侧向光束传输规格,其中SLM的图像与SLM的图像与目标后光圈的尺寸以及客观利用率相匹配。 可以使用概述的方程针对 ...
因是光波存在衍射效应,使得一个理想无限小的点物体发射的光波通过系统成像后,由于成像系统口径有限,物体光的高频成分被阻挡,最终参与成像的只有物体光波的低频成分(因此传统成像系统本质上相当于一个低通滤波器),使得最终的像不再是一个无限小的理想点,而成为了一个弥散的亮斑,称为“艾里斑”。因此当两个点物体距离较近时,它们通过成像系统后形成的两个艾里斑就会重叠到一起无法分辨,两个物点恰能分辨的距离就是极限分辨距离,对应的张角即为极限分辨角,这就是著名的“瑞利判据”。科学家发现,通常情况下该极限分辨率与光的波长(λ)、成像系统口径(D)和数值孔径(NA)等参数有关。瑞利判据为了获得更好的成像效果,科学家尝 ...
AOM器件的衍射效率以及光纤和光纤耦合造成的损耗,对于大多数AOM脉冲选择器/Pulse Picker来说,损耗将达到75%-90%。精确选择脉冲的能力它与AOM及配套射频驱动系统的消光比有关,大多数情况下,动态消光比作为最主要的因素,例如AOM的下降时间不够快,下一个(或上一个)脉冲的一部分也通过选取的范围。脉冲选择器/Pulse Picker波长适用范围(特别是对于可调谐飞秒激光器)输出一阶角与波长成正比。如果入射光束的线宽由于超短脉冲而变宽,则会导致输出一阶角的展宽。另一方面,AOM本身的透过率曲线及镀膜曲线也会影响波长适用范围。色散(特别是对于脉宽<<100fs的宽带脉冲) ...
小又受到阿贝衍射极限的限制。网上已经有很多关于衍射极限的详细知识了,比如下图。我在这里就通俗讲一下:就是当所观察的目标直径小于200nm时,传统光学显微镜就无法将它和其他不想看的物质分辨开了。也许在以前观察的物质都是直径大于200nm,我们还不会受到衍射极限的困扰,可是在科技日新月异的现在,我们要观察的物质越来越小。尤其是在利用荧光成像的活体细胞领域,比方说以前我们要观察直径大小有500nm左右的线粒体,还不会被200nm的衍射极限所影响,我们能分辨出线粒体发出的荧光成像。可是当观察线粒体中只有30nm大小的的核糖体时,想要观察它就必须突破衍射极限,否则就被线粒体的荧光掩盖了。但这又怎么能难到 ...
或 投递简历至: hr@auniontech.com