超分辨成像过程中,会在LCOS上加载光栅图形,产生衍射光,利用正负一级光衍射产生需要的图案。但是有可能因为光路问题,可能导致成像光栅消光比有限,成像的消光比会影响衍射光的效率,下面介绍的是关于,不同消光比的情况下,零级光和其他级次的衍射光的效率。在Mathematica中,UnitBox表示一个高度为1,宽度有限的区域,我打算用这个函数模拟光栅Plot[UnitBox[2 x] + UnitBox[2 x - 2], {x, -3, 3}, Exclusions -> None]光栅的周期比较多,是对上述矩阵的复制和平移,可以使用DirectDelta函数即狄拉克函数和上述函数的卷积,来 ...
lark 的空间光调制器1.高电压背板=较快的响应速度,高电压就意味着更快的响应速度。Meadowlark 使用定制的背板,和专有的驱动方案来获得一个很快的响应时间(小于2ms,随波长而变化);而大部分的其他液晶空间光调制器使用的是显示背板和标准的向列型液晶,最小的响应时间也要30ms。2.市面上可买到的相位稳定性最高的SLMMeadowlark 的背板是定制的,能够支持很高的刷新速率(最高可到6Khz),并直接使用模拟信号驱动。每个驱动器的电压刷新速度远远大于液晶的响应时间,可以确保相位的稳定性。另外,直接使用模拟信号驱动的方案,与使用数字信号相比;抖动更少,更是减少了探测器的本底噪声。3. ...
LCOS成像特性:1、改变入射到LCOS上的光的偏振方向改变:LCOS的成像原理,是改变入射光的偏振方向。理想情况下关状态下的像素,不改变入射光的偏振状态,入射光和反射光的偏振方向都平行于显示器短边。开状态下的像素将入射光的偏振方向偏转90度,即S光入射后,反射光为P光。LCOS上的每个像素在上电后只有打开和关闭两种状态。2、正反画面交替显示:为防止图像残影和液晶惰化,LCOS每一帧的显示时间不能过长(通常不超过50ms),且显示的图片需要在正向和反向两种模式间快速转换,正向显示的时间与反向显示的时间相同,这能保证在一帧图像显示结束后,液晶分子处于平衡状态,穿过该像素液晶层的电场强度积分为0。 ...
可以用相位型空间光调制器来实现透镜的功能,实际调制的相位φ为:通过相位函数作相位图的过程为:1.做出一副以中心为零点,图上每一点的值为到中心的横纵坐标x和y平方的和。2.用上述相位函数做出图上每一点的相位调制量的相位图。3.相位图上的调制量可能会大于 2π ,这时需要用菲涅尔透镜的原理将大于2π的值压缩到2π周期内。4.将0—2π的相位转化为SLM对应的调制强度值(0—255)透镜一般呈轴对称,(x^2+y^2 )等效为离轴距离r^2,上述函数可表示为此外,调制相位量随r的变化还可以表示为其它更高级次的非球面或其它面型的透镜的函数。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询40 ...
结构:SLM是基于LCOS(Liquid Crystal On Silicon液晶覆硅)工艺开发出来的,由盖板玻璃,前透明电极,液晶层,反射镜像素,集成电路背板(CMOS工艺)等结构组成。SLM有着广泛的应用,可以用于光束转向、分束、调焦,光镊,脉冲整形,衍射光学等领域。SLM的剖面图和相位调制原理图如图一所示:图1 SLM截面图及相位调制原理盖板玻璃起到保护和封装液晶的作用,针对实际使用中光源的不同波长范围,盖板玻璃表面镀有相应波长范围的宽谱AR膜,可以大大减少反射光,提高系统效率。前透明电极层位于液晶层的顶部,加载有恒定电压。液晶层是SLM中的工作物质,液晶分子的排列状况可以在电场作用下 ...
一、简介激光引起的损伤的原因主要有两类:热吸收-产生于SLM中一种或多种材料对激光能量的吸收。这种损伤形式一般适用于连续波(CW)激光器、长脉冲(单脉冲长度≥1 ns)激光器和高重复率的激光器,这些激光器的平均功率可以非常高。介电击穿-当高峰值功率密度的激光器以超过热吸收速率的速度将电子从材料中剥离而导致烧蚀损伤时发生。这种损伤形式一般适用于具有高峰值功率的短脉冲激光器为了说明这些概念,图1-图5举例说明了随时间变化的激光功率密度曲线(红色单线)和材料温度(蓝色双线)。每条曲线显示了高脉冲功率密度如何能立即导致介质击穿,以及在整个激光脉冲周期中材料温度如何升高,从而接近热损伤点。不同的材料有不 ...
数字信号左傅里叶变换,频域的采样点数是固定的,若要更多的频率,需要在时域部分添加零,但同时带来的问题是消耗更多的时间。当只是观察频域中的某一部分,又想看到更加详细的内容时,可以使用CZT变换。离散傅里叶变换公式如下表示一个离散的正弦波,基频时2π/N,k时一个整数,表示正弦信号的频率是基频的k倍。傅里叶变化的频谱角度看,它的抽样点为 ,在坐标系下可以表示为CZT_4从上图可以看到,傅⾥叶变化的频率,是对⼀个单位圆上进⾏等间隔的抽样。若要看到更多 的细节,需要在不改变原始信号的情况下,在周围补零的操作,增加信号的⻓度,如下所⽰,从⼀百个点增加到200个点,可以看到频谱的点数增加了⼀倍,考到的频谱 ...
LCOS是一种2000年后发展起来的新型显示技术,相较于传统的LCD显示。LCOS可以将像元做得很小,具有光能利用率高,图像解析度高等优点。曾因制造工艺限制屡受挫折,却因其出色的表现,尤其在高清显示和智能近眼显示行业已经占有一席之地。 可以被做成体积小、重量轻的投影模块,在汽车抬头显示、VR眼镜、智能检测等领域有着很好的应用前景。图1 LCOS像素结构示意图LCOS芯片通常主要由硬质基板(Rigidiser/Stiffener)、柔性电路(Flexi-circuit)、半导体Si层(涂覆有铝反射层的CMOS结构)、铁电液晶层(FLC)、透明前电极(Front Electrode)以及镀有增透膜 ...
声光原理在很早之前就已经为人所知了,但是声光器件真正的发展和长足的进步是随着激光技术的飞速发展才带动的,在实际的应用中声光器件一般是作为整个光学系统中的一个部件来进行使用,声光器件包括Q开关,锁模器,声光调制器(AOM),声光偏转器(AODF),声光移频器(AOFS),声光可调谐滤波器(AOTF)。声光设备本质上是一个光学单元(晶体)的其中一个面与一个射频信号发生器(产生10-100MHz级别的超声波)相连接而组成的一个器件,由于光的弹性效应,超声波对介质的折射率产生正弦扰动,使得介质折射率有了周期性变化,形成了体光栅结构,光栅的周期由声速和频率决定,当光波长跟驱动器频率匹配时,光和光栅相互作 ...
率偏低。液晶空间光调制器液晶空降光调制器,对于入射光需要线偏振光束。而且由于是像素组成的,同样也存在着衍射的现象。最后液晶相位延迟是与波长有关的器件。反馈控制有模型的反馈使用哈特曼传感器测量得到的波前信息,将相位按照不同模式展开,展开的模式有Zernike模式,Lukosz模式,本征模式。变形镜模拟各阶的Zernike模式会存在误差,但是本征模式是根据不同变形镜产生的不同模式,不存在误差,所以现在一些公司,例如Alpao都是使用本征模式,通过变形镜的影响矩阵,计算得到控制矩阵,将相位信息与控制矩阵相乘后就能够得到变形镜需要的控制电压。无模型的反馈现有的算法有模拟退火和并行梯度下降算法。给变形镜 ...
或 投递简历至: hr@auniontech.com