纯相位空间光调制器在点扩散函数(PSF)工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数(PSF) 工程的认识有了显着提高。Moerner 展示了PSF 工程与Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和3D 定位。PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。已证明的 ...
纯相位空间光调制器在STED超分辨与全息光镊中的应用一、引言由于普通光学显微镜会受到光学衍射极限的限制,分辨率只能达到可见光波长的一半左右,也就是200-300nm。而新型冠状病毒的直径大小是100nm左右。为了能够更精细地观测到生物样本,需要突破衍射极限的限制。进一步提升光学显微系统的分辨率。使用纯相位液晶空间光调制器(SLM)对光场进行调制,产生一个空心光束可以有办法提升系统的横向分辨率。不同于电子显微镜、近场光学显微镜的方法,这种远场光学显微技术能够满足生物活体样品的观测需要。同样原理,高分辨率的液晶空间光调制器通过精细的相位调制可以产生多光阱,从而对微粒实时操控,由此发展了全息光镊技术 ...
菲涅耳透镜的空间光调制器的基于衍射的相位校准摘要我们提出了一种简单而稳健的方法来确定仅相位空间光调制器 (SLM) 的校准函数。所提出的方法基于将二元相位菲涅耳透镜 (BPFL) 编码到 SLM 上。在 BPFL 的主焦平面上,焦辐照度是由一个能够测量强度相关信号的设备收集的,例如 CCD 相机、光电二J管、功率计等。根据理论模型,很容易从实验数据的数值处理中提取所需的校准函数。缺少干涉式光学装置以及使用较少的光学组件可以快速对齐设置,这实际上很少依赖于环境波动。此外,通常在基于衍射的方法中出现的零级效应会大大降低,因为测量仅在焦点附近进行,其中主要光贡献来自 BPFL 处的衍射光。此外,由于 ...
空间光调制器在拉曼光谱中的应用原理拉曼光谱学一直受益于各种科学技术的进步。对于自发拉曼光谱,电荷耦合器件(CCD)探测器允许在合理的速度下电子读出高质量光谱,大功率窄线宽近红外(NIR)激光器为生物样品提供了几乎理想的激发源,和高保真光学滤波器现在具有良好的抑制激发光的锐利边缘接近激发频率将这些光电器件与光学或完全不同的仪器(如扫描探针显微镜)相耦合,可以用微或纳米尺度的空间分辨率探测材料的分子结构。所有这些进步已经将拉曼光谱从一种昂贵的专业技术转变为遍及物理和生命科学领域的普通台式仪器。当然,技术的进步还在继续,新的和看起来遥远的光学领域在拉曼光谱仪器中得到了应用。空间光调制器(SLM)设备 ...
该方法是通过空间光调制器的液晶面控制反射光的相位分布,通过计算机向空间光调制器输入一个螺旋相位分布的全息图,形成具有螺旋相位分布的全息光栅,光束经过该面反射后即可生成涡旋光束。该方法与螺旋相位板法原理非常相似,只是实现方法不同,螺旋相位板的通过透射光程变化实现,空间光调制器是通过液晶反射控制相位,但都使光束被赋予螺旋相位。全息图法也与前两种相似,只是通过全息片使光束被赋予螺旋相位产生涡旋光束。利用螺旋相位板法产生涡旋光束能够实现较高的效率转换,并且能够克服空间光调制器的缺点对高功率的激光束进行转换。但一个螺旋相位板只能产生一个固定的拓扑荷的涡旋光束,而空间光调制器则更灵活,可根据需求调整。此外 ...
DMD光学简介DMD应用物平面——将DMD表面的图像投影到另一个表面(或虚拟图像,例如HUD)放置在系统终止端或傅里叶平面的空间滤波或光调制(包括DMD全息数据存储的使用方法)在衍射光束中放置——波长选择/光谱学如何操控灯光DMD微镜允许+/- 12º倾斜角度,在f/2.4产生4个不重叠的光锥远心是什么意思?非远心:投影透镜入口附近的投影瞳孔一般需要偏移照明远心:投影和无限照明的瞳孔每个像素“看到”光线从相同的方向来开关状态更均匀可以更紧凑更大投影镜头需要TIR棱镜TIR棱镜TIR棱镜根据角度区分入射和出射光线所有光线小于临界角将通过;其他角度反射气隙小,以减少投影图像的散光光学转换系统为了在 ...
基于DMD的320nm以下紫外光应用可靠性研究介绍许多大学、研究中心和终端设备制造商已经发表了多篇关于使用DMD的无掩模光刻的论文。利用DMD的生产系统已经由多家原始设备制造商推出。 通常,这些工具选择使用多个中到高分辨率DMD以实现高数据吞吐量,并在365-410nm范围内工作。典型工作条件是在DMD上的3-5W / cm2 照明,温度保持在30°C以下。 基于这些条件,制造商已经能够将DMD系统稳定运行。设备在 UV-A 范围内的 3.4W/cm2 、25°C条件下始终表现出超过 3000 小时的运行时间。生产合格的UV DMD中使用的标准UV窗口具有320-400nm的可用透射率区间。为 ...
DLP技术的商用应用简介由Ti公司提供的DLP 芯片,具有高可靠性和长久的使用寿命。芯片表面由像素点大小的微镜组合成阵列,每一个微镜可以控制对光“开”“关”,具有高速调制空间光的 能力,在高清图像显示方面具有优势。对于DLP 芯片,合适的LED 或 RGB LED 组合是什么?固体光源和DLP® 技术结合•无极化无3LCD那样的额外损失•可靠性大于100,000小时的寿命•无需更换灯泡降低成本•快速响应时间即时开/关,与 3LCD 不同,这两种技术(DLP技术和发光二极管)都有微秒级响应时间•色彩饱和度不错的图像质量和宽广的色域基于DLP技术的LED系统的工作原理•彩色滤光片的选择对于实现较 ...
一种技术使用空间光调制器(SLM)或微透镜阵列从一束激光产生多个激光焦点,这被认为是一种空间多路复用技术。多聚焦共聚焦拉曼光谱仪的重要组成部分是对来自多个激光聚焦的所有拉曼光谱的平行检测。使用微透镜阵列来产生多个激光聚焦。纤维束被用来从激光聚焦阵列中收集所有的拉曼信号,然后以线性堆叠的形式传输到光谱仪的入口狭缝。采用多通道电荷耦合器件(CCD)摄像机对所有的拉曼光谱进行了检测。使用一对扫描镜产生分时的多个激光聚焦,第三个振镜通过光谱仪的入口狭缝将每个聚焦的拉曼信号同步投射到多通道CCD相机上。每个光谱被放置在相机的不同像素行上,以避免附近光谱通道之间的重叠和串扰。多聚焦共聚焦拉曼光谱仪在分析吞 ...
也出现了新型空间光调制器,例如液晶空间光调制器(LC-SLM)、光栅光阀(GLV)等。1、液晶显示器LCD液晶是一种介于液态和固态之间的材料,具有良好的电光效应性能。LCD 利用了液晶双折射效应和扭曲向列效应构成的混合场效应。在扭曲向列液晶盒两侧加入偏振方向相互平行的偏振片,就构成了单个LCD像素单元。当没有对液晶盒施加电压时,入射光经过起偏器成为线偏振光,经过液晶时偏振方向随着液晶分子取向旋转,Z后偏振方向与检偏器相互垂直,此时该像素点为暗态。当对液晶盒施加电压时,液晶分子取向将会发生变化,线偏振光经过液晶后变成椭圆偏振光,能够从检偏器出射,此时像素点为亮态。LCD 的优势在于视角范围大、集 ...
或 投递简历至: hr@auniontech.com