近红外拉曼光谱的优点拉曼光谱由一个波长或频谱组成,它对应于辐照“拉曼活性”材料产生的非弹性(拉曼)光子信号。材料的拉曼辐照通常使用单频激光。由拉曼相互作用产生的拉曼指纹谱可以通过适当的探测器散射和接收的频率来确定。光谱通常被“数字化”,并在进行分析时与参考样品或参考物质光谱进行数字匹配。今天有了许多“商用现货”组件,拉曼光谱和荧光光谱等弱强度效应可以用于许多分析应用。拉曼测量的实验限制之一是光谱仪本身。特别是在拉曼光谱中,携带被分析物所需“信息”的光信号非常微弱,在测量时需要特别注意。光谱学是研究相互作用强度与波的波长、频率或势能的关系的许多方法中的任何一种。光谱学通常需要产生一个“探测信号” ...
空间光调制器在拉曼光谱中的应用原理拉曼光谱学一直受益于各种科学技术的进步。对于自发拉曼光谱,电荷耦合器件(CCD)探测器允许在合理的速度下电子读出高质量光谱,大功率窄线宽近红外(NIR)激光器为生物样品提供了几乎理想的激发源,和高保真光学滤波器现在具有良好的抑制激发光的锐利边缘接近激发频率将这些光电器件与光学或完全不同的仪器(如扫描探针显微镜)相耦合,可以用微或纳米尺度的空间分辨率探测材料的分子结构。所有这些进步已经将拉曼光谱从一种昂贵的专业技术转变为遍及物理和生命科学领域的普通台式仪器。当然,技术的进步还在继续,新的和看起来遥远的光学领域在拉曼光谱仪器中得到了应用。空间光调制器(SLM)设备 ...
拉曼光谱技术表征二维材料的应用研究上个世纪,层状材料得到了广泛的研究。然而在Novoselov等人将具有原子厚度的真正二维材料(2DMs)石墨烯剥离之前,层状材料的单层成分是无法达到的。石墨烯具有许多非凡的特性,它的发现激发了人们对二维材料(2DMs)的巨大兴趣,其范围广泛,从绝缘体、拓扑绝缘体、半导体、半金属和金属到超导体。各种2DMs合成的新进展为基础科学现象的研究提供了机会和多功能平台,如无质量狄拉克费米子、超导体、铁磁性、半整数量子霍尔效应,以及在高端电子、自旋电子学、光电子、能量收集和柔性电子等方面的潜在应用。由于厚度超薄,2DMs的能带结构、晶格振动和电子-声子相互作用等特性对制备 ...
使用空间散射偏移拉曼光谱检测猪肉中β-激动剂的优势β-激动剂残留在家畜体内半衰期长、代谢慢、稳定性差,对人类健康存在潜在风险。如果给畜禽大量喂食沙丁胺醇,大部分会沉积在动物的肝、肾、肺、肌肉等组织和器官中,人类食用会对肝、肾等内脏器官产生毒副作用,严重影响健康。高效液相色谱(HPLC)、液相色谱-质谱(LC-MS)、气相色谱-质谱(GC-MS) 、酶联免疫吸附(酶联免疫吸附)和毛细管电泳(CE) 等色谱方法已广泛应用于动物饲料和组织中β-激动剂的测定。这些方法可能具有较高的敏感性和特异性。然而,它们通常耗时、劳动密集、具有破坏性,并且需要进行预处理,这使得实时监测肉类中β-激动剂的残留变得困难 ...
拉曼光谱成像模式的优化方法为了减少来自荧光对拉曼信号的影响,人们可以使用长波长激光,但是相应的拉曼信号会有所降低。目前,大多数拉曼成像是在700到900纳米之间进行的,在这个范围内,可以发现自发荧光和拉曼信号之间的妥协。即便如此,需要很长的采集时间来检测足够的光子,并获得可接受的信号噪声。在快速系统中,获取足够的光子来测量单个拉曼光谱大约需要0.5秒,这意味着通过点扫描获得一幅512 × 512像素的拉曼图像需要36小时。为了克服这一限制,人们已经开发了几种拉曼成像模式和技术,可分为两种主要策略:提高成像采集速度和提高信号强度。在第①种策略中,对图像采集设置进行了修改,以提高成像采集速度,以便 ...
首先,典型的拉曼光谱特征宽度约为15 cm−1。在800nm附近,这相当于约1 nm的带宽。对于任何激光器系统,激光脉冲宽度和激光光谱带宽之间的反比关系意味着,对于给定的光谱带宽,可以达到的Z短脉冲有一个基本的限制。在1 nm带宽的情况下,假设脉冲形状为高斯,该脉冲宽度约为0.95 ps。将脉冲缩短到这个值以下将导致CARS中非共振背景/共振信号比的增加,从而降低对比度和降低图像质量。在SRS中,结果很简单,即使峰值功率(因此非线性光损伤)会增加,也不会产生额外的信号,因为与拉曼有源跃迁没有共振的频率分量不会产生信号。此外,如果附近发生两个共振,较宽的带宽将意味着光谱分辨率较低,获得的图像将受 ...
镜继承了自发拉曼光谱的优点, 是一种能够快速开发、label-free的成像技术,同时具有高灵敏度和化学特异性[3-6], 在许多生物医学研究的分支显示出应用潜力,包括细胞生物学、脂质代谢、微生物学、肿瘤检测、蛋白质错误折叠和制药[7-11]。特别的是,SRS在对新鲜手术组织和术中诊断的快速组织病理学方面表现出色,与传统的H&E染色几乎完全一致[12,13]。此外,SRS能够根据每个物种的光谱信息,对多种组分的混合物进行定量化学分析[6,7,14]。尽管在之前的研究[17]中已经研究了痛风中MSU的自发拉曼光谱,但微弱的信号强度阻碍了其用于快速组织学的应用。因此,复旦大学附属华山医院华 ...
实现的。介绍拉曼光谱是一种非破坏性的分析化学技术。它直接探测样品的振动模式。与电子光谱法相比,拉曼光谱法提供了高化学特异性,而不需要荧光标签。样品可以以完全无接触和无标签的方式被询问,防止对系统的破话。红外(IR)光谱是另一种常用的获得振动光谱的方法。红外光谱和拉曼光谱的选择规则是不同的;红外光谱对偶极子的变化很敏感,而拉曼光谱对偏振性的变化很敏感。这使得红外和拉曼成为一组特定化学键的良好工具。对于成像和显微镜的应用,在选择红外或拉曼光谱时,还有两个重要因素需要考虑。1)空间分辨率要求。红外光谱法使用红外光作为光源。拉曼可以使用可见光或近红外(NIR)激光器进行激发。由于可见或近红外激光器的波 ...
的光谱与自发拉曼光谱相同相干图像伪影信号是物体与点扩散函数的卷积非线性浓度依赖性线性浓度依赖性CARS的产生条件与SRS相同,但检测方法不同。在SRS中,可以检测到激励束的强度增益和强度损失,而在CARS,反斯托克斯频率下的新辐射ωaS = 2ωp−ωS 。CARS是由被称为四波混合的光学参量过程产生的,在这个过程中能量在光场之间交换。这与SRS相反,SRS是光场和样品之间的能量传递过程。这解释了为什么如果Δω不匹配样品的振动频率,因此不受非共振背景的影响,SRS不能发生,因为样品没有吸收量子振动能量的本征态。尽管与自发拉曼散射显微镜相比,CARS在成像速度上有很大的优势,但在生物医学研究中尚 ...
否与相关文献拉曼光谱相匹配?更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。 ...
或 投递简历至: hr@auniontech.com