拉曼光谱仪应用中的扫描成像方式点聚焦和逐点扫描在这种方法中,激光是点聚焦的,被测物体被平移过激光焦点,或者焦点被光栅扫描过物体。电机驱动的x-y台是常用的平移物体的设备。虽然作为研究显微镜附件的工作台可以定位精度优于±1 μm,并且可以以0.1μm的增量进行步进,但必须允许它们稳定在0.5 s左右才能达到此精度。当每个像素处的积分时间只有一秒或几秒时,沉降时间可以显著增加整个图像采集时间。尽管存在死时间问题,但电机驱动的舞台仍然受到供应商和用户的欢迎。一个重要的原因是,这些工作台对于微观测绘和更大比例尺的测绘都很有用,因为常见的模型能够在每个轴上移动10-20厘米。有几种扫描方法可以减少死区时 ...
拉曼光谱应用于脑癌检测的优势脑癌非常多样化,包括100多种类型;然而,大多数可分为脑膜瘤和胶质瘤。胶质瘤比脑膜瘤更具侵袭性,影响环绕神经并支持中枢神经系统功能的胶质细胞。星形细胞瘤是儿童常见的脑癌,成人常见的是胶质母细胞瘤,两者都是胶质瘤类型的肿瘤。另一方面,脑膜瘤通常是良性的,起源于环绕大脑和脊髓的脑膜。脑癌的诊断通常包括神经系统检查、各种成像技术(MRI、正电子发射断层扫描(PET)或CT)和组织活检。结合这些研究的信息结果,可以检测病变区域,并确定肿瘤类型和分级。虽然它们是有用的诊断工具,但也有一些缺点。首先,成像测试所需的设备昂贵,这在某些情况下限制了其利用。其次,组织活检意味着手术, ...
拉曼光谱在脑外伤检测中的应用继发性脑损伤的病理生理包括多种生物学过程,如神经炎症、线粒体功能障碍、氧化损伤、代谢损伤等,可作为损伤严重程度和预后的潜在标志物。在TBI过程中检测这些化学变化的主要实验技术是微透析结合免疫分析、质谱、核磁共振,以及近期的拉曼光谱。拉曼光谱的主要比较优势是其潜在的体内应用,通过使用局部检测探针,可以可视化代谢物浓度的空间变化。此外,该技术可以同时对几种生物分子进行多重分析,可以进行无标签,并且是非破坏性的。然而,拉曼光谱学并非没有局限性。与质谱等其他方法不同,除了之前探索的技术的一般局限性外,它不能提供关于特定蛋白质或脂类的信息。拉曼光谱研究脑外伤期间的代谢变化开始 ...
拉曼光谱用于表征二维材料薄膜厚度测定薄膜材料厚度的常用技术包括光学方法,如反射光谱法和椭偏法。在某些情况下,例如当薄膜生长在透明的衬底上时,这些光学技术可能具有挑战性,不能提供准确的结果。蓝宝石上硅(SOS)薄膜就是一个例子。对于原子薄的二维(2D)材料,原子力显微镜(AFM)是常用的厚度测量方法,然而,AFM是耗时的,并且只能给出不同位置之间的相对厚度差异。光学对比也是表征多层二维材料(如石墨烯3、4和过渡金属二卤化物(TMDs))层数的强大工具。然而,光学对比方法仅限于极少数(<10−15)层。拉曼光谱是一种基于光在材料振动模式下的非弹性散射的光学光谱技术,常用于表征薄膜和原子层材料 ...
在重叠拉曼光谱中提高光谱分辨率的方法拉曼波段由散射强度构成,散射强度是由可极化分子键(地面真相)的拉曼散射引起的波长位移的函数,这些散射强度被叠加以产生以矢量s表示的固有拉曼光谱。因此,用矢量m表示的测量光谱被测量仪器点扩展函数(IPSF)模糊化,该函数增加了拉曼波段的重叠和峰值参数失真。给定额外的测量噪声,用向量n表示,这些关系可以表示为:其中*表示卷积算子,ipsf是向量形式的ipsf。对于扫描光谱,当主要受光学元件影响时,ipsf趋于高斯分布;当主要受狭缝效应影响时,ipsf趋于三角形分布。由于这些影响,对于不同类型分子的复杂混合物,将拉曼波段分配到正确的原始分子类型并确定正确的波段参数 ...
隔离拉曼光谱技术应用于安全检查领域常用的探测炸药的方法有很多,如光谱探测技术(太赫兹、拉曼、IR(红外辐射)等)、质谱法、传感器法、x射线光谱仪、LIBS(激光诱导击穿光谱)等,每种方法在探测炸药时都有其不可避免的缺点。例如,太赫兹光谱的优势是由不同的爆炸物质在太赫兹波段的吸收特性不同决定的,有了这一特性,就可以进行爆炸物的探测和鉴定。太赫兹对非金属和非极性介电材料具有较强的穿透能力,可以探测到隐藏在这些材料中的炸药。太赫兹能量较弱,对生物组织无害,可实现生物材料的无损检测。但该技术的缺点是水分子对太赫兹的吸收能力很强,会限制检测范围。此外,太赫兹探测器装置结构复杂,体积大,制造成本高。拉曼光 ...
标签”无标签拉曼光谱已被用于研究各种生物样品中的蛋白质、脂类、核苷酸和不同的生物活性分子。原则上,由于这些键的普遍存在,蛋白质、脂类、核苷酸、碳水化合物和其他生物分子可以同时被可视化。然而,在实践中,所有含有相同键的分子都会产生重叠的光谱,这使得将来自特定化学键的信号归因于独特类型的生物分子非常具有挑战性,严重限制了检测的特异性。为了克服这个问题,不同的拉曼标签已经被开发出来。这些标签是在45000px−1到2800 cm−1之间的“沉默区域”振动的小功能基团或同位素,在该区域内没有自然发生的生物分子振动。用拉曼标签标记特定的生物分子可以很容易地将其与其他生物分子区分开来,增加检测的特异性。这 ...
长更适合用于拉曼光谱应用,但不能忽略短波长的劣势,那就是荧光效应。物体受到光照射可能会吸收光子能量,从而放射出能级小于入射光波长的光,UV-VIS波段这种情况较为明显。因此,对于许多材料而言,受到UV-VIS范围内的照射,容易产生荧光,而大量的荧光背景,则可能掩盖住本来希望采集的拉曼信号。如果来到深紫外光范围内,则能够有效避免荧光影响,因为更短的UV光激发出的荧光通常在300nm以上,可以与拉曼信号进行有效的分辨。但是紫外光的劣势也很明显,那就是能量较高,容易损坏材料,而其价格和制造难度也相对较高。综上,对于拉曼应用的激光器选择,需要综合考虑拉曼信号强度,分辨率,材料强度,光源价格等一系列因素 ...
种曾经被称为拉曼光谱的技术提供了一种获取相同数据的替代途径,避免了大部分这些限制。当光与大多数分子和物质样品相互作用时,少量光以不同的频率散射,使分子处于不同的最终能量状态。能量守恒意味着散射光可以处于较长的波长或较短的波长,这取决于样品处于较高的激发态还是较低的激发态。这被称为拉曼效应。尽管直接吸收需要红外频率来改变振动状态,但在拉曼中,信号相对于原始光源的位移量与振动能量状态的变化相对应。如果激发光源是单色的,拉曼散射信号可以被分散,在称为化学指纹区的频带中显示出尖锐振动峰的频谱。与FTIR相比,拉曼的优势在于它可以使用可见光或近红外光进行,可以通过玻璃窗、显微镜光学和使用标准的硅ccd探 ...
”研究组利用拉曼光谱作为分析薄膜材料沉积过程的主要检测手段。拉曼光谱法使用“拉曼效应”,当单色光在气体、透明液体和固体中照射时,散射光中的波长略有不同。使用这种现象分析拉曼光谱可以获得有关材料结构的信息。在 CVD 腔室中安装 In-situ 拉曼,就可以在形成薄膜的腔室中实时分析薄膜材料的浓度、晶体结构、结晶性等性能。此外,还可以检验化学沉积过程中所需的化合物气体、反应气体、薄膜生长温度、生长时间等工艺条件,以找到一个较佳的工艺方案。研究组还开发了通过分析半导体薄膜物性来推断遗传率的分析技术。介电率是指在电场中产生电极化的程度。例如SiO2是一种传统的层间绝缘材料,但由于介电率高,在实现高密 ...
或 投递简历至: hr@auniontech.com