通常,拉曼散射和远红外漫反射光谱被用于测试固体物质的晶格能的振动特性,可帮助我们从微观的角度来分析其微观特性,并且在固有属性和结构-性质规则方面提供更多的创新视角。拉曼光谱通过使用XperRam Compact(Nanobase)光谱仪在室温下进行测试,所用激发光源为633nm。NMS陶瓷晶体的拉曼散射光谱如图1所示,图1(a)所示样品的拉曼峰都很相似,基线都很平坦,并且振动峰都很尖锐。根据群论分析结果,空间群为P21/n的晶体应该有24个拉曼有源振动模式(12Ag+12Bg)。然而,在实际的拉曼峰中,只有12个峰被检测到,这是因为拉曼有源峰的叠加以及设备分辨率的影响。在100-270cm-1 ...
受激拉曼散射显微镜Moku:Lab 锁相放大器的使用拉曼现象由印度科学家C.V. 拉曼于1920 年代发现1, 2。如今,拉曼光谱已成为广泛使用的探知分子振动模式的方法3,4。与其他分析化学方法相比,光谱方法可以提供很高的空间分辨率,探测装置无需与样品相接触。分子振动光谱提供了相对较高的化学特异性,且不需要额外的标记。然而,自发拉曼现象是一个非常弱的散射现象。如果直接使用自发拉曼进行成像或者显微研究,一张图可能需要几小时的采集时间。因此,相干拉曼方法,如受激拉曼散射如今被广泛的应用于显微镜研究。在这个应用指南中,我们将讲述如何使用Moku:Lab的锁相放大器进行受激拉曼散射的信号探测。背景介绍 ...
归因于布里渊散射。布里渊散射是由黑磷中的面内各向异性引起的双折射引起的反射探测光束和黑磷样品内部的声波之间的相互作用引起的。这些振荡也通过校正减法抵消[注意,图2(a)中的校正信号是平滑的,没有振荡]。这种方法使得TR-MOKE测温法不容易出错,因为任何与传感器磁化状态无关的杂散信号都可以被抵消。图2. 使用9兆赫调制频率和w0=12 μm的激光光斑尺寸在涂覆有26.9纳米厚的三丁基锡化合物层的黑磷样品上测量的TR-MOKE信号的例子。(a)作为延迟时间函数的正(M+)、负(M)和校正的vin信号。插图显示了前几百ps时出现的周期为21 ps的布里渊散射振荡。这些振荡在校正后的Vin中被抵消。 ...
金属胶体纳米颗粒由于稳定性高、大小可调、光学性能独特和生物相容性被广泛用于超灵敏检测探针,尤其在SERS中,分子的拉曼信号增加108。基于SERS的实验有单分子水平灵敏度、分子特异性和减少光漂白的优势。许多基于纳米颗粒的金属探针被用来检DNA,RNA,蛋白质,病原体,癌细胞和化学物质,然而很少有报道使用SERS探针直接检测病毒。本文报道了通过SERS抗体探针简便灵敏地检测流感病毒。通过免疫反应将流感A/CA/07/2009 (pH1N1)捕获到基底上,然后应用SERS抗体探针。在探针Ag增强下,通过SERS检测到了低浓度的pH1N1,并且将pH1N1和其他类型流感病毒区分开来。这个方法有明显的 ...
光在朝多方向散射,因而在光电探测器上检测到的微弱光被系统的电子噪声覆盖。该纸再次以2Hz的正弦驱动,并作为模拟信号。图5 Moku示波器测量的10 MHz弱信号我们再次使用Moku:示波器来查看光电探测器检测到的10 MHz调制信号。图5显示了从光电探测器接收的漫反射信号。与镜子的强反射不同,示波器上检测到的信号与噪声无法区分。但是,信号仍然存在,可以使用锁相放大器进行恢复。首先,我们调整输入端增益。在这种情况下,我们在前端选择+48 dB的数字增益。该增益利用数字信号处理的方法增加了信号的强度。在此阶段,信号和噪声都增加,导致无SNR(信噪比)变化。图6 为测量弱信号Moku锁相放大器设置现 ...
从熔点管收集散射辐射。这种方法给出的校准精度优于1 波数。4) 氖发射线如果有标准的氖光源,Ne 发射线可用于在宽频率范围内获得高频校准。下图显示了使用 Ne 灯拍摄的光谱。下表列出了 Ne 频率,这些频率可用于校准分别通过 He-Ne 和 Kr 离子激光器激发获得的拉曼光谱。您可以通过我们的官方网站了解更多共聚焦显微拉曼光谱仪的相关产品信息,或直接来电咨询4006-888-532。 ...
部物体反射或散射,部分光反馈会与激光器腔内光相混合,引起激光器的输出功率、频率发生变化,引起输出的功率信号与传统的双光束干涉信号类似,所以被称为SMI。由于反射物的不同位置和相对移动速度会引起不同的SMI干涉频率,利用这种物理现象,如果事先做好标定和校准就可以实现对微小振动和位移的精确测量。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
个缓慢的中间散射过程改变动量,显著降低光发射强度。然而,子带间的光跃迁不依赖于导带和价带小值的相对动量,因此对Si/SiGe量子级联发射体提出了理论建议。在中红外和远红外波段,观察到非极性SiGe异质结构在价带和导带的子带间电致发光。对量子级联增益材料进行处理以制备有用的发光器件的D1步是将增益介质限制在光波导中。这使得将发射的光引导成准直光束成为可能,并允许建立一个激光谐振器,这样光可以耦合回增益介质。电介质材料通常沉积在沟槽中,引导注入电流到脊,然后整个脊通常涂上金,提供电接触,并在脊产生光时帮助消除热量。光从波导的分叉端发射出来,其活跃区域通常只有几微米的尺寸。常用的光波导有两种。脊波导 ...
自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其新推出的HSP1K(1024x1024)SLM系列的高刷新速度、高损伤阈值、大通光孔面的特性十分适用于双光子/多光子/钙离子成像这一领域。图1. Meadowlark 新推出 1024 x 1024 1K刷新率SLM二、双光子/钙离子成像技术介绍双光子激发显微镜(Two-photon excitation microscopy)是一种荧光成像技术,可以对活体组织进行深度约1毫米的成像。它不同于传统的荧光显微镜,其中激发波长短于发射波长,因为两个激发光 ...
漫射装置的光散射特性将传输的光线散布于照明空间,实现良好的照明效果。常见的有PC材料或PMMA材料,具有良好的透光性、漫射性和非常好的隔热、隔音效果。图2.光纤照明光路示意图由此可见,相比于传统的光导管传导方式相比,光纤照明技术的原理和构造基本一致,主要区别在于传导方式,而且随着技术进步,光纤照明装置还在逐渐增加自动追踪、人工光源补偿等功能,以适应不同场所的照明需求。结语:光导照明是一种比较新颖的建筑照明节能技术,一些大型建筑中为照明系统起到了分担作用,其在一定的场合与传统照明系统相比具有显著优势,建筑整个生命周期内的节能减排起到了很好的作用。虽然还有很多技术局限性,相信随着技术的发展和成熟, ...
或 投递简历至: hr@auniontech.com