效应,被物体散射或反射的光的频率将会发生多普勒频移,即物体的位移对光进行了调制,(波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低)。但是在光外差干涉法中普遍存在着非线性(nonlinearity)问题,该因素将会是其位移测量的主要误差来源,使其精度一般只有纳米级至十几纳米,原因是频率不同的光束不能很好的分离,使得相位位移和实际被测长度不成线性关系。这些周期性的非线性误差问题一直是该激光外差干涉发展的障碍。3 F-P干涉检测技术:基于多光束干涉原理的F-P干涉仪具有干涉条纹细锐,衬托对比度高等特点,在高分辨率测量方面具有天然优势。法一珀干涉仪输出的信号特征为狭窄的谐振峰,其腔 ...
光谱的低截面散射。在激光激发下,荧光与Stokes Raman散射同时发生,因为红移的Stokes Raman散射与荧光发射光谱重叠。反斯托克斯拉曼散射不存在荧光问题,因为与激发波长相比,反斯托克斯拉曼散射是蓝移的,因此在光谱中与荧光自然分离。当用可见光激发时,荧光本底问题更为严重。拉曼光谱中的强荧光信号直接影响拉曼测量的准确性和灵敏度。荧光和自发拉曼信号在波长维度上重叠,因此不能用简单的滤光片分离。幸运的是,它们在以下性质上有所不同,这是许多拉曼测量中荧光抑制方法的基础:1.荧光发射寿命(纳秒量级)远长于拉曼散射寿命(皮秒量级)。这一原理产生了各种时域方法,其中一个超快脉冲激光器用于激励,可 ...
冲、发射拉曼散射信号和发射荧光的时间轮廓。荧光过程包括激发、内部转换和发射三个重要步骤,每个步骤都发生在不同的时间尺度上。首先,入射光子激发荧光团分子的时间为飞秒(10-15秒)量级。其次,振动弛豫的无辐射内转换过程也非常快,在10-14 ~ 10-11 s之间。最后,荧光发射是一个缓慢的过程,大约发生在10-9-10-7 s左右。荧光寿命是指分子在发射荧光光子前处于激发态的平均时间。图1所示的指数衰减曲线说明了荧光发射时间的统计分布。单荧光团的荧光时间轮廓符合寿命常数τ的指数函数,而拉曼发射几乎与激发激光同时发生。由于拉曼信号比荧光信号的发射速度快得多,因此选择合适的时间门宽度,原则上可以在 ...
示了目标物体散射、反射或透射了多少光。 简而言之,光谱图告诉了我们这些特定颜色的光的含量。表示光谱的通常作法是用强度和波长的比值作个图。根据光谱特征识别不同的材料材料的光谱特征可以和人的指纹进行类比, 由于每种材料和化合物与光的反应不同,它们的光谱特征也是不同的。 就像指纹可以用来识别人一样,光谱特征可以用来识别物体。仔细地检查反射光,要研究光,需要一种叫做分光计的仪器,这是一种将入射光按波长展开成单色光的仪器。 在这里,进入分光计的是反射光,其结果被称为反射光谱。 测量物体的反射光谱也是使用高光谱成像最常用的方法。高光谱图像提供了目标物体的三维信息高光谱图像使用成像光谱仪来收集光谱信息,这种 ...
射、吸收或者散射。其中出现的散射光可以告诉拉曼光谱学家一些关于样品分子结构的信息。分析散射光的频率(波长)可以发现,其中不仅存在与入射光波长相同的成分(瑞利散射),而且还存在有少量的波长改变了的散射光(斯托克斯和反斯托克斯拉曼散射),拉曼散射光强度大约是总散射光强度的10-7 。正是这些波长改变了的拉曼散射光能够给我们提供有关样品的化学成分和结构信息.来自分子的散射光有几种成分:瑞利散射、斯托克斯和反斯托克斯拉曼散射.在分子体系中,这些频率主要是位于分子转动、振动以及电子能级跃迁相关的范围内。散射光沿着所有方向辐射,伴随波长的变化,其偏振方向也有变化。1. 散射光频率不发生改变的散射过程称为瑞 ...
范围内的拉曼散射本质上是非相干的。但通过适当的调节(称为q开关),红宝石激光器的发射可以在一个短的持续时间内(10-8秒的量级)和高的峰值功率(高达100兆瓦或更多)的单个“巨型脉冲”中获得。当如此强烈的相干光照射到样品上时,就会观察到全新的现象。正常拉曼效应的量子力学理论变得不充分。受激拉曼效应做同调拉曼散射时,试样同时受两雷射之照射,一作激发用(ωL),一作监控用(ωS),而拉曼散射之强弱可用ωS之增益为测度。这些现象通常被称为受激拉曼效应。在频率vo的大脉冲激励下,样品在一定的Stokes频率vo - v时产生增益,其中v是拉曼主动振动的频率。通常只有一个这样的频率是“活跃的”,即每条线 ...
粉末晶体上。散射配置。毛细管固定在Oxford Duplex闭路循环低温恒温器中,温度范围为330e60k,精度为±1 K。图1为室温(固体曲线)到60k(虚线曲线)冷却过程中,4BrBP三斜相的低频拉曼光谱的连续变换。在155波数和30波数随着温度的变化发生了巨大的变化。图2a为从20波数到38波数的扩展视图。图2b为130波数到170波数。在30波数的波段的温度行为如图2a所示,可见随着温度的降低其强度减小,位置由296 K下的28.3 波数到60 K下的35.0波数。在~155波数如图2b所示。这个波段急剧变窄,其强度呈指数增长,其位置从296 K下144波数移到高频一侧到60 K下的1 ...
产生背向瑞利散射光,回传的背向瑞利散射光带着使它产生散射的信号通过耦合器到光电检测器中。由于激光器发射的就是脉冲光,所以可以根据时间得到背向散射发生距光源的时间差,从而确定空间位置。OTDR得到的瑞利散射功率为一条指数衰减的曲线,该曲线表示出了光纤沿线的损耗情况。当脉冲光在光纤传播过程中遇到裂纹、断点、接头、弯曲等情况,脉冲光会产生一个突变的反射或衰减。典型的OTDR探测曲线如下图所示:二、OTDR系统及性能指标OTDR系统主要由脉冲发生器、光源、光电探测器、信号处理系统等组成。基本构架如下:OTDR直接探测背向瑞利散射光的功率,光源输出功率越高,背向散射信号越强,探测距离越远。OTDR通常使 ...
斯托克斯拉曼散射显微镜已成为一种强大的技术,具有许多在生物医学成像、细胞生物学和医学领域的应用。如果泵浦源和斯托克斯场,分别以频率ωp和ωs与拉曼活性分子相互作用,以并且频率Ω=ωp-ωs发生共振,产生频率为ωAS=2ωp-ωs的谐振反斯托克斯信号。这个信号允许对未染色样品进行化学选择性成像。然而,这个信号也有不包含任何特定的化学信息的非共振信号的贡献。这种非共振背景强度取决于采样,非共振信号会使共振信号失真,甚至可以淹没谐振信号 。共振和非共振CARS响应起源于来自三阶磁化率。在外向方向上检测 CARS信号显着降低了非共振型号的贡献,因此提高了检测灵敏度。尽管如此,许多可以避免或消除CARS ...
模式。这两种散射取决于层数和形成的材料类型。在本研究中,E12g 和 A1g 的拉曼频率差 (Δ) 从原始块状 MoS2 的 25.9 cm-1 降低到 MoS2 QD 的 21.6 cm-1。 E12g 和 A1g 差值的减小表明原始 MoS2 的层数和横向尺寸减小。为了研究所制备的 MoS2量子点的带隙能量和光学性质,文章中采用了紫外-可见 (UV-Vis) 和光致发光 (PL) 光谱。图 1b 和 c 中的 MoS2 纳米片是通过 CVD 方法合成的,用于PL信号的比较分析。正如图1(b)所示,MoS2纳米片的光谱在460,610,670处有特征峰,分别用A,B,C表示。A 和 B 峰对 ...
或 投递简历至: hr@auniontech.com