导地位的瑞利散射相比,拉曼散射非常弱。 为了获得合理的信噪比,通常需要几秒钟的长积分时间。 对于常规光谱来说,这可能不是问题,但是对于光谱成像而言,可能需要几个小时才能获得一个单一的视野。为了增强信号,这些年来已经开发了几种不同的方法。基于等离激元的方法,例如表面增强拉曼光谱,进一步将检测极限降低到单分子水平。相反,纳米颗粒诱导的不均匀性使其难以成像。 对于成像科学家来说,更有前景的方法是增强非线性光学的相干拉曼散射方法:受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)。相干拉曼效应最早是在1960年代发现的。在1990和2000年代末,由于超快锁模激光器的进步,谢尼(Sunney ...
Richard R. Ernst提出了通过把显微拉曼安装在扫描机架上对大型绘画中的颜料进行无损原位分析的方法,随着具有相对较高分辨率的手持式拉曼仪器的出现,拉曼光谱在考古学中的实用性变得更大。韩国梨花女子大学In-Sang Yang教授等报道了韩国传统绘画中发现的矿物颜料的拉曼光谱分析。如图为韩国某寺庙佛像,图中标注了颜料样品的颜色及采样位置,有些从不同的采样位置采取同一种颜色。上图是佛像中不同颜色颜料的拉曼光谱,将测得光谱与RRUFF 数据库对比,我们知道蓝色的颜料是蓝铜矿而不是钴玻璃粉末。蓝铜矿的晶体结构为单斜晶,化学式为Cu3(CO3)2(OH)2,400 cm-1处的特征峰是CuO拉伸 ...
的陷阱是主要散射来源,它影响了垂直迁移率和三种不同的传输机制:欧姆传输、陷阱受限传输和空间电荷受限传输。通过提高WSe2的费米能级来抑制陷阱态,可以提高VFET的垂直迁移率,这可以通过施加高的漏极电压来增加注入的载流子密度,或者可以通过分别施加栅极电压和降低金属功函数来减小石墨烯/WSe2、金属/WSe2异质结的肖特基势垒来实现。图1图1 石墨烯/WSe2/金属垂直场效应晶体管VFET结构 a)VFET源极、沟道、漏极示意图b) 具有明亮对比度(右面)和黑暗对比度(左面)的截面明场STEM图像 c) 石墨烯/ WSe2 /金属VFET中的陷阱源示意图 d) 器件的光学图像,显示底部石墨烯层(虚 ...
,还可以消除散射力和吸收力,克服光束捕获金属微粒时所产生的极强散射力和吸收力使得金属微粒难以被捕捉的问题,进而稳定地实现金属微粒三维捕获。此外,相对于线偏振和圆偏振光束,使用具有径向偏振的光束轴向捕获电解质微粒效率更高。四、基于空间光调制器的光镊技术随着全息光学和计算机技术的发展,光镊技术也取得了重大的进步,其中具有代表性的,即基于液晶空间光调制器的全息光镊技术。通过编程控制加载于液晶空间光调制器上的全息光栅,可实现目标光场的调制与微粒的操纵。全息光镊不仅可以按照任意特定的图案同时捕获多个微粒,而且可以独立操纵其中的每一个微粒。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006 ...
聚苯乙烯瑞利散射较严重,损耗较大;相比较,纤芯为聚甲基丙烯甲酯材料,则损耗较低。塑料光纤的主要特性与优缺点塑料光纤在性能等方面主要具有如下突出的优点。(1)重量轻。光学塑料的比重1 g/cm3 左右(比重范围一般在 0.83~1.50 g/cm3),为玻璃比重的1/2-1/3。(2)柔软、韧性好,具有良好的机械性能。直径为1 mm的塑料光纤,按曲率半径为6 mm做180°反复曲数百次,对光线毫无损害;即直径达到2 mm,仍可以自由弯曲而不断裂;且抗冲击强度好。(3)不可见光波段的透过性能好。塑料光纤在可见光和近红外波段的透过性接近光学玻璃。但在紫外和远红外波段其透过率大于50%,优于玻璃光纤。 ...
型例子是动态散射效应,电场效应的例子有扭曲-向量型效应,电控双折射效应,相变效应,宾主效应以及混合场效应等。1、动态散射效应对于一定厚度的n型液晶层,当施加在液晶盒上的交变电场频率小于某一临界值,电场强度大于某一临界值时,液晶分子将产生紊乱的运动,使各处的折射率随时间发生变化,从而使入射光受到散射。这就是动态散射效应。2、扭曲-向列型效应线偏光在液晶内传播时,其偏振方向试中于液晶分子层的分子长轴方向一致。因此,当液晶前后各放置一片起偏器和相同偏振方向的检偏器,经过起偏器的偏振光在液晶中偏振方向发生旋转,再经过检偏器时光强发生改变。在液晶盒上施加适当的电场,由于电场对液晶分子的取向作用,使得大多 ...
类, 一类为散射介质遮挡;另一类是 拐角物体。其典型的成像方法—关联成像,又称“鬼成像”(Ghost Imaging, GI), 是一种利用光场在空间上的二阶相关性对目标物体表面信息进行重构的新型成像技术。下面是基于这一原理的具体实验。基于时间相关对视域外物体的探测实验应用产品:时间数字转换器TCSPC、(超导)单光子探测器可以搭建一套基于时间相关的非视域探测系统,实现对视域外物体的高精度的定位,并初步得到物体的表面轮廓。实验过程:超快脉冲激光器发射出脉冲激光,经扫描振镜反射后照射在中介墙面上,经墙面漫反射后部分散射到达拐角处的物体,再经过物体表面反射后极小部分携带着物体信息的光返回墙面被单光 ...
,以降低光纤散射的影响。光源器件发射出来的光的谱线宽度应该越窄越好。因为若其谱线过宽,会增大光纤的色散,减小了光纤的传输容量与传输距离(色散受限制时)。例如对于长距离、大容量的光纤通信系统,其光源的谱线宽度应该小于2nm,甚至到亚纳米级。图2.光纤通信示意图(5)可靠性要高,要求它工作寿命长,工作稳定稳定性好,具有较高的功率稳定性、波长稳定性和光谱稳定性;光纤通信要求其光源器件长期连续工作,因此光源器件的工作寿命越长越好。目前工作寿命近百万小时(约100年)的半导体激光器已经商用化。(6)体积小、质量轻、与光纤之间有较高的耦合效率。光源器件要安装在光发送机或光中继器内,为使这些设备小型化,光源 ...
光微弱的背向散射所引起的耦合,可使他们的锁定在同频率上。利用磁光效应(Fraday效应,Kerr效应),在激光陀螺中产生一个附加的偏频或相移,可巧妙地避开闭锁区,使它在线性区工作。如下图,左图所示的光路结构,其中用一个具有横向Kerr效应的磁光元件(磁镜Mk)来代替前图中的反射镜M2,磁镜利用横向Kerr磁效应使相反方向入射的光束产生互易的相移而达到频偏效果,为提高反射效率,磁镜使垂直于环形激光器平面的线偏光(P光),由已磁化的磁镜反射时,两束相反方向环形的激光将产生非互易相移,但不改变其线偏振特性。右图是利用Faraday效应产生偏频的光路简图,M1,M2为全反镜,M为磁镜,F为Farada ...
解法起源于逆散射问题中的形状重建方法。zui近,离散余弦变换被采用来减少逆电导率问题中的未知数。有一个开源软件包,称为EIDORS,用于EIT的前向和逆向建模。也有一些新理论结果显示在理想的EIT模型下电导率分布的唯yi识别。在实际操作中,S的病态结构会导致严重的不稳定性。为了应对这一基本困难,通常采用正则化的min二乘数据拟合方法来计算:其中λ是适当选择的正则化参数,R是正则化算子。这样的图像重建依赖于λ的选择(通常是经验确定的)和R使用的先验信息,因而会出现过度正则化或不足正则化的问题。我们提出了一种新的正则化方法,旨在在不依赖正则化参数选择的情况下,实现保真度和稳定性的良好性能。通过研究 ...
或 投递简历至: hr@auniontech.com