在相量分析法中荧光寿命测量的应用一.简介在现有的许多光学成像模式中,荧光寿命显微成像技术(fluorescence lifetime imaging microscopy,FLIM)由于其多功能性和特异性在生物科学和材料科学中特别受欢迎。荧光寿命显微成像主要针对的是分子级别的成像,可以做到排除干扰分子后,对感兴趣的分子进行针对性的成像,主要通过大量具有明显吸收和发射光谱的荧光团实现的。成为当前分子层面上荧光测试的首先,广泛应用在DNA测序、诊断、细胞成像、超分辨率显微镜,甚至是应用在疾病的纵向(前期)临床研究和治疗监测的体内成像。相量分析法(phasor analysis,PA)可以通过时域和 ...
拉曼光谱仪、荧光寿命、光电流的相关产品信息,或直接来电咨询4006-888-532。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532,我们将竭诚为您服务。 ...
00nm绿色荧光珠的PSF。在较高的温度下,PSF在轴向上的伸长主要是由于浸没油的折射率的变化引起的。d)使用VAHEAT和空气物镜(40×,0.4NA),用共聚焦显微镜从室温到100°C成像珠子的PSF。在没有浸没介质的情况下工作时,球面像差Z小。4、快速且可靠(油浸系统)VAHEAT可以让你控制视野内的温度,独立于显微镜物镜的类型或物镜的温度。该系统被设计为独立的单元,不需要对光学设置(如物镜加热器)进行任何额外的修改,以避免在您的视野中出现温度下降。此外,我们的智能基板的特定设计确保了目标的性能即使在更高的温度下也不会改变。5、4种加热模式VAHEAT设有四种加热模式,可根据您的需要进行 ...
源代替传统的荧光灯,但是长时间不间断的照明仍会产生较大的功耗。为了充分利用太阳光以达到节约资源的目的,基于地面上应用的光纤照明系统,提出了一种应用于空间照明的太阳能光纤照明方案,直接利用太阳光进行舱内照明。图1.空间站内的照明系统一、光纤照明可行性分析以位于赤道上空35860Km的同步轨道为例,卫星绕地球一周的时间为23h 56 min 4 s,与地球自转周期相同,卫星相对地球来说是静止的,一年中仅在春分和秋分前后45天,而且每天至多只有72min被地球遮挡,其余时间内,卫星可受到太阳光的连续照射。和地面相比,用同样的面积的太阳能电池板,在同步轨道可获得6-11倍的太阳能。如果卫星处于圆形日心 ...
、偏转系统和荧光屏3个部分组成。1.1电子枪电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。图2:示波管内部示意图第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控 ...
面为四面,与荧光屏的凹面相匹配。这种纤维面板在多极像增强管和变像管中有重要应用。当图像从上一级荧光屏传递到下一级的光电阴极面时,由于它们彼此都凸得很厉害,所以不可能互相接触,甚至光学成像也十分困难。这时可以采用光纤来校正像面弯曲和畸变,并且提高边缘部分像的分辨率。图四5.光纤转换器利用光纤柔软、可弯曲的特性,可以把光纤元件排列成各种形状,而且可以把光纤元件的两个端面排列成不同形状,做成光纤转换器,如下图5所示。它可以满足系统析像的要求,例如将二维图像解析成线状列阵,然后进行一维扫描,使问题得到简化。图五相关文献:《几何光学 像差 光学设计》(第三版)——李晓彤 岑兆丰关于昊量光电:昊量光电 您 ...
,类似于光片荧光显微镜所取得的成果。与高斯光束相比,贝塞尔光束表现出较强的旁瓣,这使得贝塞尔光束用于侧照时轴向分辨率降低。然而,结合狭缝扫描拉曼显微镜,狭缝检测的共聚焦效应可以降低旁瓣对有效PSF的影响,如图1(c)所示。除了旁瓣外,贝塞尔光束在光束传播方向的光分布长度和均匀性方面都比高斯光束有优势。因此,狭缝共聚焦检测可以成功地将高斯光束的上述优点引入到侧光显微镜中。贝塞尔照明拉曼显微镜也有利于提高低浓度样品的灵敏度,因为背景信号的存在在本质上限制了微弱信号的检测能力。侧边照明有效地降低了离焦平面的背景信号,能检测出背景贡献较大时可能被镜头噪声隐藏的微弱信号。由于这种效应,灵敏度的提高足以扩 ...
拉曼光谱仪、荧光寿命、光电流的相关产品信息,或直接来电咨询4006-888-532。 ...
产生的散射或荧光。除了使用的染料可能有毒或昂贵之外,维护和设置激光及检测系统同样会限制该技术的便携性和耐用性。第二种是基于图像的细胞计数。它依赖于高速相机的使用。在使用其它设备将细胞分类到不同通道之前,您需要通过进行图像处理来判断细胞的大小。普通摄像机的帧速会限制其检测速度,每记录一帧可能需要 200 微秒的时间。第三种选择是阻抗细胞计数法。它具有快速的响应时间,无需标记且可集成分类操作。该技术基于监控细胞通过微流控通道中两个电极对时产生的介电特性的变化。其中一种方法使用锁相放大器,和匹配的电流放大器来测量微流控通道中两个电极对之间电流的变化,具体连线如图2所示。由于实验中使用了差分电流测量的 ...
或 投递简历至: hr@auniontech.com