么究竟什么是拉曼光谱,提到拉曼光谱的时候也会提及的SERS、共聚焦拉曼、高温拉曼、FT-Rama、RRS又是什么呢?下面来简要介绍下。拉曼光谱是一种振动光谱,是物质的一种固有的性质,可以非常灵敏地判断物质的组成,又被称之为指纹光谱。拉曼光谱是1928年印度科学家C.V.Raman发现的。光与介质作用发生散射,散射可以分为两种,1.弹性散射:散射光与入射光频率一样,为瑞利散射;2:非弹性散射,散射光频率发生改变,为拉曼散射,频率的变化对应的是物质的转动和振动光谱,所以收集拉曼散射可以得到物质的结构,从而完成对物质的指认。而拉曼散射根据散射光频率相较于入射光频率的变化,又分为斯托克斯线,与反斯托克 ...
激发波长对拉曼光谱的影响这里不详细阐述拉曼光谱的原理了,理论上拉曼光谱与激发光是没有关系的.但是有些样品在某种激发光的辐照下会产生较强的荧光,这会湮灭原本较弱的拉曼散射;又因为拉曼散射强度与激发波长的四次方成反比,也就是说波长越短散射信号越强,因此对于光谱整体质量作一个综合的考量离不开激发波长的选择.02 拉曼激光器的种类紫外:244nm,257nm,325nm,364nm可见:457 nm,488 nm,514 nm, 532 nm,633 nm,660 nm近红外:785 nm,830 nm,980 nm,1064 nm03 紫外拉曼优缺点优点:①紫外激发能量高,散射信号强,灵敏度高.② ...
d)。04 拉曼光谱测试红外发射率的改变显然是由于离子液体插入石墨烯层中.为了进一步表征表面多层石墨烯的插层过程,进行了原位拉曼测试(图四a).图四b展示了在不同偏压下表面石墨烯的拉曼光谱.对于原始的多层石墨烯,存在三种拉曼模式:D(1321 cm-1),G(1580 cm-1)和2D(2688cm-1)模式.D峰表明石墨烯中的缺陷,这可能是由基底蚀刻和转移过程引起的.对于低于2V的插层偏压,拉曼光谱与原始样品相似.但是,当施加的电压高于3V时,G峰和D峰的强度显着增加,并且随着偏压增加至3 V,G峰从1580cm-1变为1603 cm-1.G峰强度的增加表明了离子插层的掺杂效果.同时G峰蓝移 ...
例向大家展示拉曼光谱,荧光寿命,光电流表征异质结的结果.拉曼光谱陕西师范大学徐华老师等人合成ReS2/WS2垂直异质结,上图a是光学显微镜下材料的实际图片.图b黄,红,蓝三条光谱分别对应图a中ReS2,ReS2&WS2界面,WS2处.Eg,Ag拉曼特征峰分别代表平面内振动模式和平面外振动模式.随着层数的增加,Eg逐渐向低波数方向移动,Ag逐渐向高波数方向移动,通过两个振动的位移差可以判定它的层数.上图b显示了在异质结晶粒中两个相邻区域和一维界面处获得的拉曼光谱.从ReS2处收集的拉曼光谱在150 cm-1(Eg),308 cm-1(Eg)和213 cm-1(Ag)处出现特征峰,这与单层 ...
红外光谱和拉曼光谱都可以用来分析分子结构和化学组成,而且它们都属于分子振动光谱。但是,事实上,它们之间存在非常大的差别,最明显的就是,红外光谱是吸收光谱,拉曼光谱是散射光谱,表现在光谱图上就是,红外光谱是凹的,拉曼光谱是凸的。另外,同一种分子的拉曼光谱和红外光谱所呈现的信息也往往不同,这与分子结构与分子振动都有紧密的关系。下面来简单对比下红外光谱与拉曼光谱。一、检测原理红外光谱:物质由于吸收光的能量,引起分子由低能级向高能级跃迁,测量在不同波长处的辐射强度就得到了红外吸收光谱。拉曼光谱:光照射物质,发生散射,其中非弹性散射的部分,散射光频率相对于入射光频率发生了一定变化,这部分非弹性散射被称为 ...
拉曼光谱学是用来研究晶格及分子的振动模式,旋转模式和在一系统里的其他低频模式的一种分光光谱学技术。拉曼散射为非弹性散射,通常用来激发拉曼光谱的激光范围为可见光,近红外或者近紫外光范围附近,激光于系统声子进行相互作用导致最后光子能量增加或者减少,而由这些能量的变化可得知声子模式。下图展示了显微拉曼光谱原理光路以及使用的相关器件:其中用来进行拉曼光谱实验的激光器我们称之为拉曼激光器,拉曼激光器区别于普通激光器的一个最大不同就是激光器的线宽,就是激光器的单色性,一般来说,普通激光器的线宽在0.1纳米到几个纳米之间,而拉曼激光器最低要求激光器线宽不能超过0.001纳米,最好是使用单纵模激光器进行实验。 ...
测试了它们的拉曼光谱。图中分别为原始石墨烯和掺杂不同浓度Mn3O4颗粒的石墨烯的拉曼光谱图,展示了具有D,G和2D峰特征的原始石墨烯和掺杂石墨烯的拉曼光谱的演变。D峰(ω~1350cm-1)是石墨烯的无序振动峰,只有当缺陷存在时才能被激活。G峰(ω~1580cm-1)是sp2碳原子面内振动引起的,通常与应力有关,因此可用来反映石墨烯层数。2D峰是双声子共振二阶拉曼峰,用来反映多层石墨烯的堆垛方式。二硫化钼MoS2如上图是首尔国立大学Takhee Lee的研究工作,用拉曼光谱仪(Xper Ram200)测试了MoS2的拉曼谱图。E12g是MoS2的面内振动模式,拉曼峰在380cm-1处,A1g是 ...
拉曼光谱是一种振动光谱,是物质的一种固有的性质,可以非常灵敏地判断物质的组成,又被称之为指纹光谱,是表征物质性质的一种重要手段。拉曼位移是一个相对于激发光波数的相对波数值,对于同一振动模式,发射光子与入射光子的能量差恒定,所以不同的激发波长下拉曼位移相同,最终获得拉曼光谱也是一致的。那么在拉曼光谱仪中该如何选择激发波长呢?我们从以下几个方面进行考虑。从获得拉曼信号强度方面进行考虑。在同等条件(如激光功率、光栅、采集时间等),拉曼光谱仪所获得的拉曼信号强度与激发波长有如下关系:从上式可以看出,激发波长越短,拉曼信号越强 !从避开荧光干扰方面进行考虑。下图展示了某一样品在532nm、633nm、7 ...
关于哈特曼传感器的原理的介绍及相位恢复方法哈特曼传感器是在相机前放置一个微透镜阵列组成。光束经过每个微透镜后都会聚焦在一点,聚焦点的位置被能够反应出光束的方向,然后反推出光的波前信息。下面的内容是模拟光束经过透镜后聚焦的过程,然后简单的叙述了两种相位恢复的算法。模拟步骤1. 构建相位面,获取焦面上的图像,计算斜率2. 重建波前方法分为两种,一种是区域法,一种是模型法。3. 对比重构之后的相位和输入的相位面,对比结果构建相位面,计算质心,获取斜率1、构建相位面数字化处理的方式多是无量纲的数据,因此默认量纲为a,假设为1um。一个连续的光斑,光强和相位面是连续的,这里将它离散,变成一个二维矩阵,单 ...
D5。大多数拉曼光谱仪需60dB以上瑞利光抑制,这可以通过几个BNFs的顺序级联得到。图1显示了两个级联BNFs在785 nm处光谱轮廓,两个滤光片组合光密度约为7。图2显示了一个高端薄膜陷波滤波器的光谱轮廓。可见使用VBG滤波器技术可以实现带宽的显著降低,这使得单级光谱仪进行超低频率拉曼测量成为可能。图2不同BNFs的透射光谱如图3所示。OD>3在488 nm处的滤光片,其特征损耗约为15-20%,532 nm滤光片损耗为15-20%,633 nm滤光片损耗为10-15%,而785 nm滤光片损耗小于10%。BNF光学损耗主要是由光在玻璃体中的散射引起的。光散射与波长的四次方成正比增大 ...
或 投递简历至: hr@auniontech.com