展示全部
超精密光学应力测量设备-硫系玻璃及Si,SiC,GaN等应力测量
定量双折射成像系统
双折射显微成像系统(abrio替代产品)
Hinds液晶面板应力分布测量系统
非球面透镜应力双折射测量系统
光弹性系数测量仪
光伏硅锭应力测量仪
定制型双折射平面结构
曲向列液晶的双折射效应,当不同位置的光通过液晶层后,会产生不同的光程差,从而实现相位的调制。 涡旋光束是具有连续螺旋状相位的光束,即光束的波阵面是旋涡状的,具有奇异性,其光束的中心是一个暗核,此处的光强为零,相位无法确定。对于光学涡旋,特别是具有复杂拓扑结构的光学涡旋,可以通过SLM获得。本文利用Meadowalrk Optics公司的P1920型液晶空间光调制器产生了不同拓扑荷值的涡旋光。 Meadowlark Optics公司的空间光调制器采用独有的模拟寻址技术,使相位的稳定性更出色。本文用到的P1920型SLM具有高分辨率,高衍射效率,高填充因子,高损伤阈值,高灰度等级(4096/1 ...
角动量会使得双折射粒子发生旋转的特性。1991 年Sato 等首次实现了光镊中粒子的光致旋转,所采用的光束为旋转的高阶Hermite-Gaussian光。之后出现一系列的利用新型光阱来研究微粒的光致旋转,如空心高斯光束、拉盖尔-高斯光束、高阶贝塞尔光束、面包圈空心光束及LP01 模输出空心光束等,这些空心光束的优势是捕获粒子时所产生的热效应小,且具有常用的高斯光束形成的单光束梯度力光阱所不具有的新特性。传统的全息技术则推动了这些新型光束在光致旋转方面的应用研究。轨道角动量则与光场的特定空间分布相联系。具有轨道角动量的光束可以通过旋转的Dove 棱镜来产生,但这需要在光学波长范畴下很精确的布置棱 ...
,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的o光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。相对于传统的变形镜运用机械的镜面形变来改变光程差,空间光调制器具有更高的调制精度。液晶空间光调制器在自适应光学领域的典型应用1、大气湍流模拟器鉴于液晶空间光调制器的亚毫秒液晶响应速度、高像素密度、高相位调制精度、相位编程实时控制等特点,因此可以很好的模拟大气湍流随机性,变化速度 ...
曲向列液晶的双折射效应,当不同位置的光通过液晶层后,会产生不同的光程差,从而实现相位的调制。Meadowlark Optics公司的空间光调制器采用独有的模拟寻址技术,使相位的稳定性更出色。Meadowlark Optics(原BNS)致力于空间光调制的研发已有40多年的历史了,最早主要与美国军方合作。其空间光调制器技术处于世界领先水平,以高液晶响应速度(up to 500Hz),高衍射效率,高填充因子,高损伤阈值等性能著称。02 空间分辨率液晶空间光调制器(LCos)是由二维的像素阵列组成的,Meadowlark Optics公司可以提供的空间分辨率有1920x1152、512x512、1x ...
,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。结论:高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。 ...
要求。5、高双折射光子晶体光纤与传统的保偏光纤(蝴蝶结形、椭圆形、熊猫形)不同,这些传统保偏光纤中至少使用了两种不同的玻璃材料,而每种材料的热膨胀系数不同,因此存在温度敏感的问题;而光子晶体光纤所能获得的双折射特性对温度极不敏感,这是许多领域都需的一个重要特征。图1.5 保偏光子晶体光纤横截面显微图三、光子带隙导引型光子晶体光纤(空心光子晶体光纤)当光子晶体光纤的纤芯区域具有比外围的光子晶体包层小的折射率,光的导引传输机理不同于全内反射,而是基于存在的光子带隙(PBG)。事实上,构成光子晶体光纤包层的空气孔微结构是二维光子晶体,它是一种具有光子带隙特征的周期性电介质材料,特定波长范围的光是不能 ...
,电光晶体的双折射效应与外加电场强度成正比,偏振光经过电光晶体后,偏振面旋转的角度与晶体长度和两侧所加电压的乘积成正比。电光调Q激光器的原理图如下所示:目前普遍应用的电光晶体有KD*P(磷酸二氢钾(KDP),磷酸二氘钾(DKDP))晶体和LN(铌酸锂LiNbO3)晶体。当线偏振光入射到电场中的晶体表面,分解成初相位相同的左旋和右旋两束圆偏振光。在晶体中,两束光线的传播速度不同。即从晶体中出射时,两束光线存在相位差。则合成的线偏振光的偏振面已经和入射光的偏振面存在相位差,称为旋光效应。其中的起偏器由格兰-付克棱镜构成。格兰-付克棱镜(方解石空气间隙棱镜)是由两块方解石直角棱镜拼接而成,由于晶体对 ...
同性,无自然双折射影响,大孔径,大容忍角等特点,成为偏振成像最理想的调制器件。如下是基于光弹调制器的偏振成像系统。图1 基于光弹调制器搭建偏振成像检测系统光路图这套光弹偏振成像系统的技术难点是,由于光弹调制器的调制频率(40-60KHz)与相机采样频率(30-100hz)存在比较大的差别,所以同步和计算是这个技术的核心。一些已经发表的关于利用偏振成像进行油膜检测的文献如下:1,水面溢油可见/近红外偏振光检测方法研究。王峰,杨锦宏,李小明,叶振良,激光与光电子学进展,49,051202(2012)2,基于偏振信息的遥感图像大气散射校正[J].叶 松,方勇华,孙晓兵 等.光学学报,2007,27( ...
向异性,产生双折射,使寻常光与非寻常光折射率呈现差异,最终表现光束偏转。折射率变化与电压呈线性关系的称为普克尔效应;而常用的非线性晶体KTP被用来做普克尔盒;目前,普克尔盒常用晶体的半波电压基本在1000V~1800V之间,但是比较通用的驱动芯片MOSFET耐压值大多小于1000V,而MOSFET由于自身工艺导致开关频率又做不快,通常在几百KHz,而CMOS晶体管的工作频率可以达到几十MHz,但是常见管子的耐压值又比较低,只有700V左右;一款优秀的脉冲选择系统对于晶体来说,需要考虑半波电压、工作频率、透过率等,但是目前最大局限还是半波电压稍高,给驱动设计带来很高的要求;对于另一个核心部件,驱 ...
须使光纤的线双折射尽量低,如低双折射液芯光纤。在分布式光纤传感器中,为了测量不同点的参量,可采用掺杂(如某些稀土元素或过渡金属离子)光纤或光栅光纤等。图2.光纤传感器的内信号的变化情况结语:根据光纤传感的工作原理可知,光纤传感器系统主要由光源、光纤、调制器(传感头)、光探测器和信号调理电路等部分构成。光纤传感器研究的主要内容是如何实现对被测量的调制与解调,但设计光纤传感器系统时必须了解光源、光探测器以及传感器用光纤的相关知识,实现对光纤传感器用光源、光探测器及光纤的基本知识,实现对光纤传感器用光源、光探测器及光纤的基本特性。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-8 ...
或 投递简历至: hr@auniontech.com