晶体双折射当一束光穿过晶体变成两束光的现象就称为双折射,这种晶体也称为双折射晶体。出射的两个光束有各自的性质,其中一条光被称为寻常光,简称o光,因为他的性质遵循一般的物理性质。另一束光称为非寻常光,简称e光,光方向不同,折射率也不同,其折射率呈现一个椭球面。在某一个特定的方向,o光和e光是无法分开的,这个方向就称为光轴,这个方向上,o光与e光的折射率相同。并且从下图中可以看出,如果e光椭球面上的最小折射率与o光相同,则称为正晶体,若椭球面的最大折射率与o光相同,则称为负晶体。有些晶体只有一个光轴,叫做单轴晶体,也有些晶体有两个或者三个光轴。入射光和光轴组成的平面称为主截面,o光与e光都是线偏振 ...
原理计算可得双折射的系数,并且结果表明三个化合物都是负的双光轴晶体,在1064nm的激发光下Δn=nz-nx,其双折射系数分别为:0.070, 0.090和0.060,此数据表明上述三个化合物的双折射系数大于已经报道的磷酸复盐晶体。图3(a)、(b)和(c)分别为化合物K2(TeO)P2O7、Rb2(TeO)P2O7和Cs2(TeO)P2O7的双折射系数谱图您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
LC的厚度和双折射的组合产生了优化到555nm(人类视觉系统的峰值响应波长)的四分之一波板(QWP)。理想状态下,“亮状态”的光经显示器后偏振方向旋转90度,而“暗”状态的光经显示器后,偏振方向不发生变化。图4 PBS晶体光路进出显示器的入射光和反射光必须在空间上分开。这通常使用分光器来实现,最有效的方法是使用偏振分光器(PBS)。PBS是一种反射偏振器,常用的偏振面与入射光束成45度角。它可以被用来从一个非偏振光源产生两束正交偏振光,也可以根据偏振光的方向选择性地反射或透射光。图4说明了这一点,它显示了入射到PBS上的非偏振光和从PBS中输出的两个正交偏振态。这也显示了标记为“s”和“p”的 ...
加应力,产生双折射。产生双折射大小主要取决于光纤的包层半径、光纤环绕半径和波长。实践验证该控制器可产生全方位的偏振态变化。基于上面的模型,通常将三个环形控制器可以等效为λ/4,λ/2,λ/4。从上图左边第一个圆环起,可将任意偏振态的光转换为线偏振态,再由等效为λ/2圆环改变偏振方向,再经由等效λ/4圆环将线偏振态的光变为任意偏振态的光。因此在调试时,可以将重点放在中间圆环上,等待效率调试较高时,比较稳定时,再细微调节第三个圆环。由于SSPD芯片对偏振比较敏感,需要通过第三个圆环找到合适偏振态,以达到探测器的最优探测效率。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888 ...
型效应,电控双折射效应,相变效应,宾主效应以及混合场效应等。1、动态散射效应对于一定厚度的n型液晶层,当施加在液晶盒上的交变电场频率小于某一临界值,电场强度大于某一临界值时,液晶分子将产生紊乱的运动,使各处的折射率随时间发生变化,从而使入射光受到散射。这就是动态散射效应。2、扭曲-向列型效应线偏光在液晶内传播时,其偏振方向试中于液晶分子层的分子长轴方向一致。因此,当液晶前后各放置一片起偏器和相同偏振方向的检偏器,经过起偏器的偏振光在液晶中偏振方向发生旋转,再经过检偏器时光强发生改变。在液晶盒上施加适当的电场,由于电场对液晶分子的取向作用,使得大多数分子的长轴或者沿电场方向排列(p型),或者垂直 ...
入射光会产生双折射,限制了它们在成像系统中的应用。光学塑料目前也已普遍应用于许多光学仪器中,由于塑料镜片可由模压而得,所以生产率高,成本很低,同时塑料镜片还具有重量轻,耐冲击性好等优点。光学塑料的缺点是其内部透过率比玻璃要低,热膨胀系数和折射率的温度系数较光学玻璃大得多,其折射率随环境的变化比玻璃要大数倍到数十倍。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
向异性引起的双折射引起的反射探测光束和黑磷样品内部的声波之间的相互作用引起的。这些振荡也通过校正减法抵消[注意,图2(a)中的校正信号是平滑的,没有振荡]。这种方法使得TR-MOKE测温法不容易出错,因为任何与传感器磁化状态无关的杂散信号都可以被抵消。图2. 使用9兆赫调制频率和w0=12 μm的激光光斑尺寸在涂覆有26.9纳米厚的三丁基锡化合物层的黑磷样品上测量的TR-MOKE信号的例子。(a)作为延迟时间函数的正(M+)、负(M)和校正的vin信号。插图显示了前几百ps时出现的周期为21 ps的布里渊散射振荡。这些振荡在校正后的Vin中被抵消。(b)比率信号——来自实验(符号)和热模型模拟 ...
上晶体的自然双折射和输出光的折射率相匹配。尽管这种方式可以实现相位匹配,但是限制了这些材料只能在小波长范围内实现。而通过改变结构,让PPLN晶体的晶向周期性反转,通过在每个正弦产生的峰值反转晶向,可以避免光子间反相,最终,产生的光子数量将随着光通过晶体的传播而增加,获得高转换效率。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
应该不会产生双折射,并且光纤的偏振态在传播过程中是不会改变的。然而,在实际中,常规光纤在生产过程中,会受到外力作用等原因,使光纤粗细不均匀或弯曲等,就会使其产生双折射现象。当光纤受到任何外部干扰,例如波长、弯曲度、温度等的影响因素时,光的偏振态在常规光纤中传输时就会变得杂乱无章。而保偏光纤的应用则是可以解决这一偏振态变化的问题,但它并不是消除光纤中的双折射现象,而是通过在光纤几何尺寸上的设计,产生更强烈的双折射, 来消除应力对入射光偏振态的影响。保偏光纤在拉制过程中,当线偏振光沿光纤的一个特征轴传输时,部分光信号会耦合进入另一个与之垂直的特征轴,最终造成出射偏振光信号偏振消光比的下降,从而影响 ...
向同性,产生双折射现象,即当一束光线通过有内应力的玻璃时,将产生传播速度不同的两束光线,分别称为寻常光线和非常光线。钢化玻璃产品是表面应力为 70 MPa 或更高。电视面板的内应力要低得多,但这些应力可以增强面板抵抗玻璃因典型阴极射线管的真空而损坏的能力。汽车挡风玻璃或电视面板等退火产品具有低或中等的表面应力(小于或约 7 MPa)。所生产制品内的应力分布在很大程度上取决于工艺条件,因此该参数表示玻璃生产过程的控制。玻璃成型模型可以预测产品内的最终应力分布。因此,应力分布的准确测量可以提供有关此类模型准确性的信息,并可以指导改进模型的开发。应力引起的双折射是众所周知的。当光照射到各向异性晶体( ...
或 投递简历至: hr@auniontech.com