方向沿x轴,双折射器光轴方位角为Ω,延迟为φ,检偏器透振方向为θ方向,则系统Jones矩阵可表示为:若以强度为的自然光入射,则系统出射光强可表示为:因此,测得Ω、θ、I(λ)及值即可计算出该波长所对应的延迟值。这种方法便于测量不同波长对应的位相延迟,若辅以精密的单色仪便可以方便快捷地获得大量数据。但考虑到系统表面反射及吸收损失,不易准确测得,所以该方法只适于找到光强随波长变化规律而不易准确测得延迟值。然而,对λ/2波片情况则较为特殊,这里做进一步分析,上式对的一阶导数为:当φ=π时可见光谱扫描曲线中,λ/2波片在相应波长处光强值为zui大或zui小,所以仅从曲线极值所在位置便可精确确定波片在该 ...
的情况下,圆双折射和二色性及其叠加如图1所示,这种情况称为极性法拉第效应。图1.磁化诱导的圆双折射(a),圆二色性(b),以及垂直入射平面偏振光的极性法拉第几何中两种效应(c)的叠加。在垂直于传播矢量的平面上,显示了光偏振的轨迹。两个面外磁化畴对极化状态有不同的影响,如与畴颜色相同的箭头所示。在(c)中,法拉第旋转是指椭圆长轴的旋转。虽然法拉第旋转让人联想到光活性介质的圆双折射,但有一个重要的区别:如果光再次以相反的方向通过材料,在法拉第效应的情况下,旋转不会取消,而是会加倍。这种不可逆性的原因是法拉第旋转与磁化方向而不是光轴有关。磁化相对于传播方向的反转导致沿m轴的首xuan左圆形模式和右圆 ...
近,我们利用双折射多路复用[40-42]或空间复用[43,44]演示了一组自由运行固态单腔室系统,使用所有常见光学元件,具有超低的相对时序噪声性能。 [43]中报告的系统可以实现子周期相对时序抖动([20 Hz,100 kHz]积分范围),从而超越了ASOPS系统在泵浦-探测测量方面使用两个锁定激光器的性能。此外,低损耗、低非线性和低色散腔体的二极管泵浦固体激光器非常适合产生千兆赫的梳光谱。它们比传统的钛宝石系统更简单,同时还能更好地抑制高频泵浦强度的波动,支持更低噪声、更高功率,并且与光纤激光器相比重复率扩展更为简单。1. GHz双梳激光器双梳激光器的布局如图1(a)所示。线性共焦激光腔与单 ...
片是基于晶体双折射性质的偏振器件,在光线技术、光学测量以及各种偏振光技术等领域具有广泛的应用,其中1/4波片及1/2波片在偏振器件中应用尤其广泛。测量波片相位延迟量的方法主要有:光强探测法、旋光调制法、半阴法、光学补偿法等。这些方法主要基于对光强的测量,容易受光源的不稳定及杂散光的干扰,精度受到一定的限制,测量误差一般在0.5°左右。本文从理论上分析了利用椭偏仪测量波片相位延迟量的可能性,讨论了其测量精度及误差来源,并利用消光式椭偏仪测量了1/4波片以及1/2波片相位延迟量。实验表明:测量过程不受光强波动的影响,方法简单,操作方便,精确度高,测量波片相位延迟量精度达0.02°。测量的原理利用消 ...
7)中出现磁双折射。Voigt(1908)对MO现象的早期研究作了概述。在20世纪初,MO现象已经成为一个重要的研究课题。量子力学还没有出现,因此对这些现象的理论理解是完全缺乏的。洛伦兹(1884)提出了法拉第效应的早期理论模型,该模型基于左圆偏振光和右圆偏振光与固体中的经典电子振子的耦合方式不同的观点。德鲁德(1900a, 1900b)进一步扩展了理论。对MO效应的基本认识随着量子力学的发展而增长。Hulme(1932)和Halpern(1932)首先提出法拉第效应是由自旋-轨道(SO)耦合下的自旋极化电子运动引起的。休姆在他的考虑中使用了克拉默斯-海森堡色散方程,该方程根据电偶极子算子的能 ...
ac干涉仪对双折射或地形效应等互反效应不敏感。这些影响通常会导致Kerr-SNOM图像中的伪影。为了测试新的可变温度UHV-Sagnac-SNOM的性能,人们使用了一小块垂直磁化和大Kerr旋转(红光约0.41)的TbFeCo磁光(MO)盘。表面轮廓由1毫米宽的轨道组成,由0.6毫米宽和100毫米深的凹槽分隔。沿着磁道,等间距的磁位与相反的磁化被热磁写入。图2图2(a)和(b)显示了MO盘的Sagnac-SNOM图像以及同时记录的地形图像。在地形图像中可以清晰地检测到轨迹和凹槽,这表明在目前的设置下,尖端到样本的距离控制在特高压下工作得很好。图像中的小波纹结构是由噪声激发的尖端到样品的振动引起 ...
振式干涉仪由双折射棱镜(渥拉斯顿棱镜)组成,棱镜可把输入光束分为偏振方向正交的两弯曲光束。为了再次合成,固定的角反射镜反射光束,并在棱镜中发生干涉。干涉信号通常在分束器后激光器的腔体内接收,棱镜的横向位移将改变两偏振光束之间的光程差,并在干涉相位中引入线性变化。因此,棱镜相当于移动靶标。图3.6直线度干涉仪了解更多详情,请访问上海昊量光电的官方网页https://www.auniontech.com/three-level-45.html更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件 ...
.摘要:具有双折射光学特性的响应材料已经在一些现代电子设备中被用于光的操纵。虽然电场通常用于实现光调制,但磁刺激可能为远程控制和操纵光提供诱人的补充方法。本文报道了具有不同寻常磁光性质的磁响应双折射微粒的合成和表征。这些功能微颗粒是通过微流控乳化工艺制备的,其中水基液滴在流动聚焦装置中产生并拉伸成各向异性形状,然后通过光聚合转化为颗粒。双折射特性是通过在液滴拉伸过程中将纤维素纳米晶体排列在微颗粒内来实现的,而磁性响应性是通过在初始液滴模板中添加超顺磁性纳米颗粒来实现的。当悬浮在流体中时,微粒子可以通过外部磁场进行可控操纵,从而产生独特的磁光耦合效应。使用一个远程驱动的磁场耦合到偏振光学显微镜, ...
向垂直。由于双折射效应,信号光和闲置光将沿不同心的圆锥传播,其中一束为正常波(o波),一束为异常波(e波),如图3所示。在圆锥截面的重叠处,信号光子和闲置光子处于偏振纠缠态,如图4所示。图3 第二类SPDC光束示意图图4 第二类SPDC光束截面示意图我们用H和V分别表示水平偏振和垂直偏振,则在参量近似下,描述第二类SPDC的相互作用哈密顿量为:其中,与分别表示产生H和V偏振的k模光子的光子产生算符。下面讨论量子态的时间演化,对第二类SPDC,式(5)和式(6)的形式仍然成立,不过要用式(8)的哈密顿量,信号光和闲置光的初态也要作相应变化。设,则利用式(6)和式(8)可得:定义如下的偏振真空态和 ...
没有蓝宝石的双折射效应。三、具体实验验证实验采用YAG晶体,中心波长1030 nm的飞秒激光器,脉宽约为400 fs,重复频率为300 kHz。利用显微物镜将激光束聚焦于样品表面,光斑大小3.5 um。样品的移动通过高精度三维电控位移台实现。对YAG晶体样品表面的不同位置进行辐照,所有实验均在常温、常压的空气中进行。单脉冲作用后的烧蚀形貌如图所示,在单脉冲烧蚀下,损伤坑的直径随着脉冲能量的增加而增加而增加。在飞秒激光作用后,在烧蚀坑内和周围形成了一定数量的纳米颗粒。图1.单脉冲烧蚀形貌记录多脉冲作用下,孵化效应在烧蚀过程中扮演重要角色。在介电材料和半导体材料中,由外部激光作用引起的晶格缺陷,可 ...
或 投递简历至: hr@auniontech.com