蓝宝石和石英石板小双折射的测量摘要:测量了石英和蓝宝石板在632.8 nm处的双折射。观察到的双折射被认为是由光轴相对于平板几何结构的倾斜引起的。用两种仪器方法进行了测量。空军研究实验室使用了穆勒矩阵激光旋光计,Hinds使用了exicor系统。介绍了测量技术,并给出了测量结果。简介及背景石英和蓝宝石是单轴晶体,当晶体定向时,使光束经历非凡和普通的指数,就可以很容易地观察到这些材料的双折射。如果晶体的光轴与光学系统的轴对齐,则不会观察到本征双折射。然而,如果这两个轴没有对齐,一个起源于这两个轴之间的角度的双折射将被观察到。得到了石英和蓝宝石的平板,经过切割和抛光,使晶体光轴从平板的法线向表面倾 ...
研究氟化钙的双折射摘要:本文介绍使用一种PEM光弹调制器,其中PEM的速度为整个的双折射映射打开了大门 ,通过在信号处理方案中增加一个额外的锁相放大器,可以进一步提高测量速度。除了速度,PEM技术还提供了较高的双折射测量精度。业内得到共识的是,氟化钙CaF2是一种实用的光学材料,用于157纳米光刻步进和扫描透镜。制备高质量的低应力双折射CaF2一直是一个挑战。除了这种应力诱导双折射,约翰·伯内特和他在NIST的同事们发现了CaF2沿<110>在157.6纳米处的晶体轴径为11.2纳米/厘米这一消息对于光刻工业来说是一个不受欢迎的意外,因为他们错误地认为属于立方晶体群的CaF2是一种 ...
双折射测量技术介绍1.理论基础(1)偏振光尽管光具有波动性和粒子性,当处理偏振光时只考虑粒子性。光可以看作是横向电磁波,因此光由电场振动和磁场振动组成。但是,一般来说只考虑电场振动。我们可以把它分解成相互垂直方向上的两个振动来处理电场振动。如下图所示,1.1偏振光的分解起偏器是由和光波长相比足够小的光栅制成,或者由一特定偏振方向的光吸收材料组成,如果在光路中安装起偏器,光线是否能透过起偏器就取决于光的振动方向。也就是说,光透过起偏器只有一个振动方向。这里,因为振动方向是直线的,所以称为线性起偏器,振动方向的平面称为偏振面。一般,用p偏振光和s偏振光来表达偏振态。当光入射于介质时,入射光方向与法 ...
的分量。由于双折射效应,光束沿椭圆偏振,在四分之一波片和中旋转传播。仔细调整波片后,当反射光束到达时,大部分激光功率仍停留在X轴上。PBS1作为一个分析仪,在Z轴向外反射激光功率。当调制电压加载在上时,Z轴和X轴之间的激光功率比发生变化,导致损耗调制。这种腔体设计保证了两个EOM在不同的工作模式下工作。一个EOM作为损耗相关的驱动器,另一个EOM作为相位相关的驱动器,以减少不良影响,实现完全稳定。超低噪声频率梳的布局如图1(b)所示。为尽量减少环境噪音,我们将OFC安装在铝盒内。光纤振荡器是一种环境稳定的掺铒光纤激光器,由保偏光纤(PMF)组成。采用NALM锁模机制,获得了稳定的脉冲序列和自启 ...
应也被称为圆双折射效应。V oight和Cotton和Mouton在顺磁液体中发现的磁双折射现象。这些效应被称为线性磁双折射。Williams以及Fowler和Fryer首先应用磁光成像技术来实现磁畴的可视化,这些都是基于Kerr效应。由于克尔显微镜的这些较早的应用,连续的系统发展大大增强了传统克尔技术的能力。通过干涉层的应用实现了显著的对比度增强,但克尔显微镜的突破是随着20世纪80年代视频显微镜和数字图像处理的引入而来的。自20世纪50年代以来,法拉第显微镜也主要用于磁性柘榴石薄膜和正铁氧体的透射实验,由于法拉第效应比克尔效应强得多,因此不需要电子对比度增强。基于Voigt效应的透射显微镜 ...
化诱导了圆形双折射,因此,两种圆形光模式在通过半导体传播时经历了不同的相移,这导致入射线偏振光的偏振面旋转。图2.4.2 K时n↑= 1.5·1017 cm−3和n↓= 0.5·1017 cm−3的Kerr旋转谱图2为根据图1的吸收系数计算得到的克尔旋转光谱期望值。克尔旋转仅在砷化镓带隙附近是非零的。此外,在频谱的中间存在一个符号反转。这表明正确的光子能量的选择对GaAs中pMOKE测量起着至关重要的作用。实验发现,不同样品的克尔旋转光谱略有不同。因此,在n-GaAs样品上进行pMOKE测量的第1步是优化探针激光束的光子能量。zui重要的是,对于一个固定的光子能量,克尔旋转角θK与GaAs导带 ...
二维电子系统中砷化镓的磁光克尔效应除了本体砷化镓的自旋注入实验外,二维电子系统的自旋注入实验进行光学测量并不像在大块GaAs样品上进行pMOKE测量那么简单,因为2DEG对称性的降低可能会严重影响光学选择规则,从而影响pMOKE的强度。事实上,研究表明,在狭窄(约10 nm宽)的GaAs/(Al,Ga)As量子阱(QW)系统中,约束势迫使价带中重空穴态的轨道角动量和自旋角动量向垂直于QW平面的面外方向运动。此外,约束提升了Γ-point处重空穴态和轻空穴态的简并性,将轻空穴带移至较低能量处(见图1)。考虑到这两个因素,只有面外极化重空穴才能促进与导电带电子的复合过程。这对磁光过程有重大影响。在 ...
效应、磁线阵双折射、塞曼效应、磁光克尔效应等。(1)磁光法拉第效应磁光法拉第效应又称磁光旋光效应,是指当一束线偏振光从磁光材料沿磁场方向透射时,由于材料折射率的不同,磁光材料中的左旋和右旋偏振光,即偏振面相对于入射光的偏振面偏转一定角度的一种磁光现象。法拉第效应产生的根本原因是磁光材料中的电子等磁性粒子发生光学跃迁。在磁场的作用下,这种跃迁使得在磁光材料内部传输的左旋圆偏振光和右旋圆偏振光产生一定的色散差,导致zui终透射光的偏振面相对入射光旋转了一定角度。(2)磁线振双折射当一束线偏振光以垂直于磁场方向的方向从磁光材料传输时,线偏振光被分解成两个偏振光,两种偏振光在材料中以不同的相速度传播, ...
色散可控,高双折射,高非线性,大模场等。图1硫系玻璃光子晶体光纤结构[2]硫系PCF解决了传统单模光纤放大器因纤芯过细导致高功率下产生非线性效应,引起光纤端面损伤的不足,对于大功率光纤放大器、高功率激光传输等应用领域具有重大的意义。(2)耦合器光纤耦合器可将输入信号的不同波长成分从不同输出端口分离出来,或将多个不同波长的输入信号混合成单个输出,其对光场(分束比)的调控由光纤纤芯中传播光之间的模式重叠长度和纤芯间的距离决定。基于硫系玻璃光纤制备的光纤耦合器在未来的中红外通信、激光、传感等领域均有重要的应用前景。(3)光纤合束器光纤合束器是实现高功率激光的核心元器件,可解决单个激光器功率进一步提升 ...
及退偏。线性双折射是指线偏光的两个正交分量的折射率差,圆偏光双折射是指左旋和右旋偏振光之间的折射率的差值。衰减则定义为偏振光zui大zui小透过率差值的比值。总之,有6个参数来表征非退偏样品的延迟和衰减特性,线性位相延迟器的大小,线性位相延迟器和圆偏光位相延迟器的快轴角度,线性衰减器的大小,线性位相衰减器和圆偏光衰减器的角度。(4)PEM光弹调制器是一种基于光弹效应的共振偏振调制器。光弹效应是由机械应力导致的透明介质固体中的线性双折射。光弹调制器发明于1960年。其中设计zui成功的光弹调制器包括了一个矩形的熔石英和一个有单晶石英制成的压电传感器。PEM是由各向同性的光学材料制成的,如石英等。 ...
或 投递简历至: hr@auniontech.com