改变光波导的折射率)。然而,由于大多数光电材料的热光系数相对较小,产生相位变化通常需要数十至数百微米数量级的路径长度。处理位的数据,需要个移相器,随着数据量的增加,这种方案可能会导致系统结构过大。此外,相位变化生效所需的时间相对较长,大约为数十微秒,这会限制片上(on chip)训练过程的速度(因为需要频繁地改变相位来计算梯度)。最近的一些工作旨在利用光学快速傅立叶变换 (OFFT)、环形谐振器、声光调制器和3D打印的替代架构来解决这些问题。其它基于相变材料、电吸收和电光效应的方法也可以解决其中的一些问题,但这些技术仍未成熟。当前不足:传统的光学神经网络(optical neural netw ...
伪影。组织中折射率的不均匀分布会导致严重的光学像差,从而降低图像分辨率和信噪比(SNR)。强光剂量会干扰正常的细胞行为和细胞器功能,导致活体成像的光子剂量有限,即信噪比低,时间分辨率也会下降。为了解决组织长时间高时空分辨率监测非常困难的问题,研究人员开发出了各种各种的技术手段。过去的十年中,亚细胞活体显微镜有了大幅的发展,例如转盘共聚焦显微镜、自适应光学(AO)、高速双光子显微镜和光片显微镜(LSM),它们与新的动物模型一起促进了神经科学、发育生物学、免疫学和癌症生物学领域的各种研究。然而,在分辨率、速度、SNR和样本健康之间存在难以躲避的矛盾,这在实时荧光成像中被称为“挫折金字塔(pyram ...
接近透明,其折射率接近2,这远大于普通玻璃材料。因此氮化硅材料适合用于设计高效超表面。氮化硅纳米柱的高度全为700nm,矩形晶格周期为500nm,半径在90到188nm之间。纳米柱的仿真使用有限差分时域(FDTD)法。选择了6个合适的半径加工,氮化硅纳米硅的透射系数和相位响应与在633nm时纳米柱半径的关系见图2B。图2C和D是加工结果的扫描电镜图像。图2、动态 SCMH 的实现。刻度条,1um实验结果:视频1、动态空间通道复用超全息图显示结果视频2、动态空间通道选择超全息图显示结果视频3、动态三维空间通带选择超全息图显示结果附录:光路,DMD为DLP6500FYE参考文献:H. Gao, Y ...
方面。在阶跃折射率光纤中,可以根据输入光线定义数值孔径,其中在纤芯-包层界面处可能发生全内反射的最大角度:入射光线首先被折射,然后在纤芯-包层界面发生全内反射。 然而,这只有在入射角不太大的情况下才有效。光纤的数值孔径 (NA) 是允许的入射光线相对于光纤轴的最大角度的正弦值。它可以通过纤芯和包层之间的折射率差来计算,更准确地说,具有以下关系:请注意,NA 与光纤周围介质的折射率无关。例如,对于折射率较高的输入介质,最大输入角度会更小,但数值孔径保持不变。上面给出的等式仅适用于直纤维。对于弯曲光纤,可以使用一个近似修正方程,其中还包含弯曲半径 R 和纤芯半径:对于不具有阶跃折射率分布的光纤或其 ...
光具有不同的折射率,波长短者折射率大。 光学系统多半用白光成像,白光入射于任何形状的介质分界面时,只要入射角不为零,各种色光将因色散而有不同的传播途径,结果导致各种色光有不同的成像位置和不同的成像倍率。这种成像的色差异称为色差。通常用两种按接收器的性质而选定的单色光来描达色差。对于目视光学系统,都选为蓝色的 F光和红色的C光。色差有两种。其中描述这两种色光对轴上物点成像位置差异的色差称为位置色差或轴向色差,因不同色光成像倍率的不同而造成物体的像大小差异的色差称为倍率色差或垂轴色差。如下图,轴上点A发出一束近轴白光,经光学系统后,其中F光交光轴于 A'F,C光交光 轴于 A'C。 ...
源,通过梯度折射率多模光纤(包层直径125um,纤芯直径62.5um)进行偏振分辨二次谐波生成成像。在成像之前需要用校准单元使用干涉测量的方式对通过光纤的光进行校准,此过程大约需要5分钟。校准信息得到后,可以通过将适当形状的波前耦合到光纤中产生聚焦点。每个聚焦点位置对应一个空间光调制器(SLM)上的特定图案。SLM序列显示不同的图案,实现在距多模光纤出光口15um的平面上进行聚焦点扫描(模拟激光扫描显微镜)。成像时,移除校准单元,二向色镜将后向散射回光纤的二次谐波生成信号反射进入光电倍增管进行成像。实验证明:(1)小鼠尾腱上两个区域Ⅰ和Ⅱ的线偏振二次谐波生成成像结果。(a)图从上到下分别是所有 ...
介质中的微观折射率不均匀引起的光学散射使得入射光的(行走)路径随机化,这对有效传递光强造成了巨大的挑战。为了克服这一挑战,(研究人员)正在积极开发和应用波前整形(wavefront shaping, WFS)方法来将光聚焦到或穿透散射介质。WFS通过调制入射波前使得不同行走路径的散射光子在目标位置相长干涉。WFS技术可以分为三类:基于反馈的波前整形、传输矩阵求逆、光相位共轭(optical phase conjugation, OPC)或光时间反转(optical time reversal)。前两类通过一般需要数千次测量的迭代过程来确定调制波前,这导致系统运行时间相当长。基于OPC的WFS方 ...
性电光效应是折射率的变化,它与外加电场的大小成正比。1 外加电场对折射率的影响,可以通过任意偏振的光束观察到晶体中的方向,由三阶张量描述。忽略物理量的矢量性质,外部电场对晶体折射率的影响具有以下形式其中 是折射率的变化,no 是未受扰动的折射率,r 是电光张量中的适当元素,E 是施加的电场。 即使在少数具有大电光系数的晶体中,这种影响也很小。 例如,对铌酸锂晶体施加 106 V/m 的电场将产生大约 0.01% 的分数指数变化。 很少看到分数指数变化大于 1%。体调制器使用铌酸锂、LiNbO3 和 KTP 制造电光幅度和相位调制器,这两种晶体具有高电光系数和良好的光学和电学性能。这些晶体生长 ...
音传播介质的折射率的微小变化来工作。以连续波模式工作的1550nm激光二极管发出的1mW光束通过光纤发送到Fabry-Pérot标准具。腔内压力发生变化的那一刻,透射(以及反射)光强度的强度就会被相应地进行调制。因为对于许多应用来说,使用单根光纤的简单传感器设置是第1选择,所以对反射光进行监测。在普通光纤内进出传感器头的光束使用光环行器分开,从而可以监测传感器的反射光。通常介质的折射率变化是非常小的,在标准条件下(室温、环境压力),如果压力变化1Pa,空气的折射率变化约3×10-9。然而,从声学的角度来看,1Pa的交变压力(~1×10-5的环境压力)已经相当响亮了,它大致相当于有人在几厘米的近 ...
小点厚度测量高数值孔径目标问题严重的问题是用于确定薄膜厚度的干涉信号的对比度降低。在高数值孔径物镜中,光线在胶片中以不同角度折射(见图1),因此光线在胶片材料中的路径长度不同。这意味着它们具有不同的相位差。一旦不同的光线组合在一起并且相位叠加在探测器上,相长干涉峰/谷和相消干涉峰/谷之间的对比度就会减弱。这种影响的严重程度取决于具体的胶片叠层和数值孔径。但是,一般来说,效果随着厚度的增加而增加。图 1 大数值孔径(NA) 的小光斑测量NA 如何影响厚度测量在硅氧化物测量示例中很容易看出效果。 200nm氧化物的UVVis反射光谱(200-1000nm)的模拟如图2 所示。它显示光谱随着NA 的 ...
或 投递简历至: hr@auniontech.com