2(b)),中心波长分别为1058 nm(comb 1)和1057 nm(comb 2)。我们观察到两个梳的无杂波射频(RF)频谱,在一个重复频率约为1.1796 GHz的频点上(图2(c))。重复率差在这里被设置为Δfrep= 21.7 kHz。图2:双梳激光器输出特性的表征,两个梳同时运行:(a) 平均输出功率和脉冲持续时间随泵浦电流的变化。详细的锁模诊断结果显示在(b)-(d),用于后续的测量。(b) 光谱。(c) 在重复频率差为21.7 kHz时,每个梳的射频频谱。(d) 通过二次谐波自相关测量的脉冲持续时间。脉冲持续时间τFWHM是通过反卷积获得的,假设为sech2脉冲形状(虚线对应 ...
的光脉冲串,中心波长约为1550 nm。脉冲首先通过偏振色散补偿光纤,以补偿下游组件的色散,其余的光纤组件均采用保偏光纤,确保即使在环境不稳定的情况下系统也能稳定运行。脉冲随后通过掺铒光纤放大器,然后被50:50的光纤分离器分光,每个COSMO模块接受一半的脉冲光束。在考虑损耗后,每个COSMO器件的输入功率约为45 mW(脉冲能量180 pJ)。这一数值大约比使用传统高度非线性光纤产生超连续介质和f-2f自参考所需的功率低5倍。来自环内COSMO模块的fceo信号与来自RF合成器的30 MHz信号混合。该信号通过锁相环反馈器件向激光器提供反馈。通过计数器分别记录来自内环与外环模块的信号次数, ...
的峰值发射,中心波长为424nm,图1c-d显示了534nm和720nm处的部分位错。图2中标有“1”和“2”的两个区域的光谱响应确认,PDs由于RISFs在424nm处有类似的尖锐发射,而在530-540nm处为较宽发射。通过结合光谱和空间信息,可以将后者的发射归因于可移动的硼杂质。图1、(a)SiC的PIN二极管的实色EL(b-d)退火后从高光谱数据中提取的单色EL图像图2、区域1和2的EL光谱Photon etc.的IMA高光谱成像仪在区分不同故障类型的发光特征方面扮演了至关重要的角色,为我们深入研究SiC材料中缺陷的形成和传播机制提供了强有力的支持,从而进一步拓展了我们对这个领域的理解 ...
1,波片1在中心波长532.4nm处为近1/4波片,由步进电机控制两元件旋转,转动精度优于2′,由计算机控制360°自由旋转。图1 斯托克斯椭偏仪仪器矩阵测量装置示意图实验中,被测量的斯托克斯椭偏仪由两个KD*P电光晶体KD*P1和KD*P2、波片2、检偏器和光纤光谱仪组成。高压调制器以倍频的关系控制两KD*P两端电压的快速反转,从而实现入射光斯托克斯参数的完全调制。光纤光谱仪主要包含微型光栅和线阵CCD,可以同时得到多个波长处的光强值,可测光谱为300~1100nm。整个测量系统由Labview软件编程实现自动化控制。一般情况下,入射光的斯托克斯参数、波片的方位角误调和相位延迟随波长变化。由 ...
差为:图2为中心波长为532.4nm处3种方法斯托克斯参量实验值与理论值的对比。ΔS的测量结果如图3所示。由图可知,当波长为500~600nm时,非线性zui小二乘拟合方法获得的斯托克斯参数的总均方根(RMS)偏差约为1.6%,较传统定标方法(四点定标法和E—P定标法的RMS约为2.1%)提高约0.5%;波长大于600nm时,系统信噪比的降低使得新方法的测量精度降为2.4%,但由于波片1的相位延迟远远偏离90。(见图4),这使传统测量的误差显著增大,远大于非线性zui小二乘拟合方法的测量误差。图2 波长为532.4nm处3种方法斯托克斯参量实验值与理论值的对比图3 斯托克斯参量的总均方根偏差本 ...
点:1.锁定中心波长,稳定波长输出;2.高功率输出;3.窄线宽输出;4.物理性能稳定,不易潮解;5.无偏振相关性;6.参数可定制;VBG主要参数:波长范围:400-3000nm;(常用波长:1908nm,2090nm,2109nm等)衍射效率:10%-99%;半高全款(FWHM):0.1nm -2nm;尺寸大小:8mm x 6mm,可定制;高损伤阈值镀膜(可选)上海昊量光电作为OptiGrate在中国的授权代理商,负责OptiGrate公司产品在中国市场的销售、技术服务、市场推广服务。对于体布拉格光栅(VBG)有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。如果您对体布拉格光栅 ...
SHG。利用中心波长为1.49 eV (830 nm)的脉冲激光产生SHG信号。插图显示了不同厚度的拉曼(3L到Bulk)图2显示了不同InSe厚度的SHG和拉曼(插入)测量结果。由于SHG是一个非线性过程,它发生在非中心对称系统中。观察这个效应奇偶厚度证明,由于晶体对称性,任何层数都会发生自旋分裂。通过将SHG和拉曼与文献进行比较,可以确定测量的样品为ϵ-InSe。如果您对磁学测量有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-level-150.html更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司 ...
其中青色光(中心波长/带宽,470/24nm)和绿光(550/15nm)通过物镜分别照射到样品台上,激发基于GFP的GEVI以及mCherry。参考文献Lu X, Wang Y, Liu Z, et al. Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy[J]. Nature Communications, 2023, 14(1): 6423.Fura-2 Ca2+在小鼠垂体细胞中的成像为了探究蛋白酪氨酸磷酸酶受体N和N2(P ...
,4 μ m中心波长)内M2光束质量因子的表征;背景中显示了完整记录的三维光束演化(伪颜色),以供参考(径向不对称是由于用于避免过饱和的球面镜造成的);对子午面进行分析(输入光束轮廓为高斯分布)。在大多数应用情况下,能够很好地表征和量化激光束质量的一个实用参数是M2因子。它本质上表明了实际光束与理论衍射限制光束(衍射限制高斯光束的M2因子为1)的差异有多大。光束质量因子具有明确的实际意义,例如,任何采用映射方法的高光谱无像差显微镜的分辨率都可以通过将理论衍射限制分辨率与所利用光源的M2因子相乘来估计。确定M2因子的程序由ISO标准11146定义。它涉及到光束焦散的测量(在一个瑞利距离内至少五个 ...
nm)代表了中心波长(CWL)/半高全宽(FWHM),已经通过内置的滤光片来改进光源输出。功率(mW)是在光导(连接到显微镜或光学扫描仪)的远端测量得到的。集成三种不同类型的固态光源,可以在整个可见光和近红外波段内提供均匀的功率输出。图4.由TTL触发,AURA光引擎(Lumencor, Inc., Beaverton OR)交替输出485nm(约0.5ms宽)和560nm(约3ms宽)的脉冲(示波器记录)。图中显示了两条叠加的示波器轨迹,其中485nm的强度通过RS232串行命令从100%调整到55%,而560nm的强度保持不变。485nm和560nm的脉冲时间间隔为0.25ms。图5.模拟 ...
或 投递简历至: hr@auniontech.com