谱剖面显示,中心波长和半高宽分别为531.8 nm和0.78 nm。由此估计,较小可达到的拉曼光谱分辨率范围为20 ~ 28 cm−1。对应于300 ~ 3000 cm- 1的拉曼位移,Stokes线将落在540 ~ 630 nm的范围内,典型的硅探测器在这个范围内表现出较高的效率。这些因素使得低成本的CCD探测器能够很容易地探测到拉曼散射光子。另外,人们也可以使用商业上可用的激光二极管,如Thorlabs DJ532-40,它也基于相同的原理工作。由于以下原因,在激光器内部由二极管产生的发射剖面中存在额外减弱的强度808 nm线,不影响测量:(i)其强度几乎比532 nm弱25倍。(ii)与 ...
绿色有不同的中心波长LED色域•这些只是两个示例 LED•来自不同供应商的不同 LED 的行为方式不同•散热解决方案也会影响色域LED三色通道成像光路示意图更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006- ...
万个具有不同中心波长的保持相等频率间隔的连续波激光器。图2.飞秒激光器在切割材料示意图结语:高功率飞秒激光在医学、超精细微加工、高密度信息存储和记录方面都有着很好的发展前景。高功率飞秒激光还可以将大气击穿,从而制造放电通道,实现人工引雷。利用飞秒激光能够非常有效地加速电子,使加速器的规模得到上千倍的压缩。此外,高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火,从而为人类实现新一代能源开辟一条崭新的途径。如果您对飞秒激光器有兴趣,请访问上海昊量光电的官方网页:920nm, 4W飞秒激光器(双光子)(全新样机免费试用)——920nmMax输出功率可达4W,超宽色散 ...
00 fs。中心波长为840nm(红外线)的激光束在BBO晶体中频率翻倍至420nm(蓝光)。基波光束在样品位置的功率高达350mw,作为泵浦光束激发样品。功率约为1mw的倍频波束作为探测波束。图1图1显示了在极性/法拉第(图1a)和纵向(图1b)几何结构中使用的光束路径。在静态测量的情况下,只使用蓝色(探针)光束。对于时间分辨的测量,延迟级用来在泵浦脉冲和探测脉冲之间引入时间延迟。光路50mm的变化允许泵浦和探针光束之间的总时间延迟超过300ps。在通过物镜聚焦到样品上之前,两束光束是平行偏振的,并由二向色镜共线叠加。半波片和格兰-泰勒偏振器的组合用于调节两束光束的功率。为了获得更好的信噪比 ...
缺点。图四:中心波长1000nm(工作波段900-1100nm)的介质镜反射率曲线(参考)此外,我们的SLM 采用 Meadowlark Optics 专有液晶材料,可最大限度地减少 SLM 中液晶层所需的厚度。 通过最大化像素间距与 LC 厚度的比率,我们能够提供像素间效应最小的 SLM,可以在工作波段范围内轻松实现92%以上的零级衍射效率,最高可达98%。图五:镀介质镜的SLM结构示意图图六:不同光栅常数的相位光栅的一级衍射效率MeadowlarkOptics公司产品型号命名规则:特点四:高损伤阈值26GW/cm2镀介质镜的设备具有高效率和低热效应,提升了器件对高峰值功率激光的承受能力,使 ...
的光谱分布是中心波长为610nm和半峰全宽为170 nm。该技术较大地拓宽了光谱带宽,增强了光强,测量结果更加准确。椭偏仪大多采用透镜将宽带光束聚集在样品表面,然而透射式光学系统设计无法满足宽光谱的测量要求,在深紫外情况下会产生明显的色差问题。直到 2013 年,电子科技大学物理电子学院和中科院微电子所改变聚焦成像系统,研制了基于全反射聚焦光学系统的深紫外(DUV)宽带光谱椭偏仪。该椭偏仪采用基于离轴抛物面镜和平面反射镜的全反射式光学系统实现宽光谱(200-1000 nm)测量,离轴抛物面镜用于产生或聚焦准直 光束,平面反射镜用于改变光束方向并补偿由离轴抛物面镜反射引起的偏振态变化,解决了色差 ...
00纳米。在中心波长为790nm的Ti:蓝宝石再生放大器上,以5KHz的重复率提供持续时间为150fs的激光脉冲。部分光束用作泵浦光。光束的另一部分用于在1.5 mm厚的硼酸钡晶体中通过二次谐波产生395 nm的探测光束。使用孔径为0.65的物镜将两束光束共线聚焦在样品上。在孔径为20 μm的共焦平面上,测量了探头和泵浦光束的光斑直径d。dprobe≤300 nm, dpump≈400 nm。用交叉偏振片技术分析共焦平面后探头的极性克尔旋转。交叉分析仪的消光比<5x10-4。利用光电倍增管和锁相检测方案检测弱泵浦探头Kerr信号,该方案可用于可调至1ns的不同泵浦探头延迟。测量是在垂直于 ...
)。泵浦光束中心波长为790nm,探测光束中心波长为395 nm,在1.5 mm厚的硼酸钡晶体中通过二次谐波产生。两个独立的望远镜允许一个人调整每个光束的模式,以获得对样品的zui佳聚焦。通过光延迟线后,泵浦光束与线偏振的探测光束共线。聚焦是使用一个标准的显微镜物镜与一个数值孔径0.65的40倍物镜。尝试使用反射物镜来zui小化探测脉冲的群速度色散,然而它恶化了探针束的偏振状态,否则探针束在整个显微镜中保持偏振消光比为0.0005。聚焦光斑的直径分别为300 nm和600 nm。反射的探针光束被分束器收集,聚焦在直径为20 um的针孔上。对于某些示例,这种共聚焦配置可用于消除来自样品衬底的背景 ...
;(b)PL中心波长的假彩色图和(c)从高光谱数据中提取的两个PL光谱–参见相应的颜色。与Pablo Docampo教授研究小组(New Castle University)合作研究了大型钙钛矿晶体。一个好的太阳能电池需要尽可能发光[2]。PL强度的映射(图3)提供了一种快速评估非辐射损失并获得材料效率输入的方法。为了获得这样的图谱,使用532nm激光以10个太阳的等效功率激发样品。在不到一分钟的时间内以 670nm波长从880nm采集到5nm的数据。图3、在790nm处提取的PL图像(a)和从不同区域提取的PL光谱(b)。还使用Photon的GRAND-EOS平台进行了大规模测量。使用532 ...
情况为例,在中心波长λ=637.8nm处,带宽对λ/4波片误差<0.0005%;对λ/2波片误差<0.07%。可见实验条件下带宽对测量的影响很小。(3)偏振器的消光比对测量的影响:当考虑偏振器的消光比时,系统透过光强的表达式非常复杂。仅以式(2)为例,当θ=0°时,系统透过光强zui大值则可近似表示为:若以φ(0)表示理想偏振器的测量值,φ(a)表示考虑消光比的测量值,则误差可以按下式估算:若按a≈10-5计算,对旋转波片法而言,当θ=0°时,λ/4波片误差<0.002%,λ/2误差<0.29%;当θ=45°时,λ/4波片误差<0.2%,6,λ/2误差<0.45%。对旋转检偏器法而言,λ/4波 ...
或 投递简历至: hr@auniontech.com