天我们要说的荧光观察(Fluorescence Microscope)要介绍荧光显微镜,我们需要先简单介绍一下荧光原理:在光的照射下,具有荧光特性的物质的电子在吸收能量后,可由低能级电子层跃迁到高能级电子层。高能态的电子是不稳定的,它会在极短的时间内(10-8s),以辐射光的形式释放能量后,回到原来的能态。这时发出的光即为荧光(fluorescence),其波长比激发光的波长要长,原理如图2-6所示。利用物质对光吸收的高度选择性,可制成各种滤片,吸收一定波长范围的光或允许特定波长的光通过,用来激发不同的荧光素,产生不同颜色的荧光。对于荧光的激发波长一般都在紫外和可见波段,而对于荧光的发射波段一 ...
示拉曼光谱,荧光寿命,光电流表征异质结的结果.拉曼光谱陕西师范大学徐华老师等人合成ReS2/WS2垂直异质结,上图a是光学显微镜下材料的实际图片.图b黄,红,蓝三条光谱分别对应图a中ReS2,ReS2&WS2界面,WS2处.Eg,Ag拉曼特征峰分别代表平面内振动模式和平面外振动模式.随着层数的增加,Eg逐渐向低波数方向移动,Ag逐渐向高波数方向移动,通过两个振动的位移差可以判定它的层数.上图b显示了在异质结晶粒中两个相邻区域和一维界面处获得的拉曼光谱.从ReS2处收集的拉曼光谱在150 cm-1(Eg),308 cm-1(Eg)和213 cm-1(Ag)处出现特征峰,这与单层ReS2一 ...
荧光分析和成像技术由于具有高灵敏度和分子特异性等优点被广泛应用在生物、化学、医学、物理等领域,人们可以通过荧光光谱和荧光显微技术来分析样品中荧光团的组成,但是现有的荧光分析技术绝大部分是基于对荧光强度的测量,所以容易受到多种因素如激发光强度、荧光团浓度的影响,从而难以进行定量测量。荧光物质的荧光寿命指的是当其被激发光激发之后,该物质的分子吸收能量从基态跃迁到某个激发态,再以辐射跃迁的方式发出荧光回到基态。激发停止之后,分子激发出的荧光强度降到激发最大强度时的1/e所需的时间被称为荧光寿命,它表示粒子在激发态存在的平均时间,一般被称为激发态的荧光寿命。荧光寿命仅仅与荧光物质自身的结构和其所处的微 ...
备的钙钛矿的荧光寿命(时间分辨光致发光TRPL),基于混合阳离子单晶工程技术的和基于常规溶液混合法的(MA1-xFAxPbI3)1.0(CsPbBr3)0.05(x = 0.8)钙钛矿薄膜的寿命分别为44.15ns和32.39 ns。 这表明单晶工程技术制备的钙钛矿的复合率和陷阱浓度较低。我们可以得出结论,由于更长的寿命和更少的缺陷,基于混合阳离子单晶工程的钙钛矿可以有效地改善高性能PSC的稳定性。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
,有时受样品荧光干扰,这时候可采用近红外激发;红外光谱在中远红外进行,不受荧光干扰。6. 拉曼光谱分子在平衡位置附近极化率变化不为零;红外光谱分子在平衡位置附近偶极矩变化不为零。7. 拉曼光谱可以测试低波数的谱段,而且如果采用共聚焦显微微区测试的话,光斑尺寸可以小到1微米,空间分辨率较好;红外光谱测试低波数的谱段非常困难,而且微区测试较难,光斑尺寸约10微米,空间分辨率较差。8. 拉曼光谱可以测试水溶液,而红外光谱不可测试水溶液。 ...
不同于普通的荧光滤色片,拉曼滤色片都要求非常锐利边缘,一般起始波数都在200个波数左右。美国Chroma公司拉曼滤光片对于一些有低波数需求的应用,会使用陷波滤波片(Opti Grate Notch Filter)进行滤波,使用陷波滤波片可以使起始波数从5个波数开始。下图所示就是用陷波滤波器所测得的拉曼光谱效果,可以看到其起始波数都是差不多5个波数开始,如果用一般的拉曼滤色片,那么就无法看到低波数的拉曼信号。OptiGrate公司公司低波数滤光片一般来说拉曼光谱所需求的光栅光谱仪要求光谱分辨率越高越好,受限于成本等原因普遍采用分辨率优于5个波数的光栅光谱仪即可。并且考虑到拉曼信号是弱信号,普通的 ...
单光子是光的最小能量单元。常见单光子探测器根据光电效应制作而成,这种机制的主要是雪崩二极管,由于其探测效率低、暗计数比较大,限制其应用。而工作于超导态的单光子探测机理在100年以前已经被发现,随着近代微电子、微加工技术的出现,使得超导单光子探测器才成为可能。超导单光子探测器(SSPD)由纳米带隙形式的超薄超导膜组成。为了更高效的探测单光子,该带隙通常被做成曲线型。为了可以产生电脉冲,在超导带加DC电流偏置,形成超导临界态。当窄带隙吸收光子后,形成具有非平衡浓度的准粒子区域。 此时,电流密度超过临界水平,并在纳米带上形成电阻区域。该电阻区域是由于单光子在该位置打破了该点超导态,形成一个热点,热点 ...
强 !从避开荧光干扰方面进行考虑。下图展示了某一样品在532nm、633nm、785nm三种波长下获得的拉曼光谱以及该物质的荧光光谱。可以看到该样品的荧光峰主要集中在580nm至785nm之间,假如使用532nm或者633nm作为拉曼激发光,那么所获得的拉曼信号会有很大一部分被更强的荧光信号所湮没。所以对于该样品,785nm波长是较为合理的拉曼激发波长。从分析样品不同深度信息的需求进行考虑。激发光波长与在样品中的穿透深度有如下关系:可以看到,激发光波长越长,穿透深度越深。对于多层样品,例如下图,可以利用不同波长穿透深度不同,进而分析样品不同层的信息。除了上述三个方面之外,对于某些特定的拉曼探测 ...
单光子计数器现可分两大类:时间相关单光子计数器和单光子计数器/单光子探测器;前者更多被称作时间相关单光子计数器(TCSPC),更多应用在比较关心单光子对应的时间信息,而其根据分辨率不同、通道数不同又存在差异;后者更多被称为单光子探测器,因为其内部集成有APD可探测单光子,对于要求探测器精度不高的场景,应用更加偏重单光子的数量,这种产品既涵盖了单光子探测器的功能,又集成了单光子计数器的功能。本篇着重介绍后者,单光子计数器/单光子探测器(SPD)。基本框图如下图所示,主要由APD、偏压控制、温度控制、信号采样、信号处理模块、MCU控制器组成。图1 系统框图从上图可看出,其核心部件是APD;当光照射 ...
上篇文章《基于APD型单光子计数器系统简介》中,简单介绍了单光子计数器/单光子探测器(SPD)的结构组成以及模块功能。本篇文章主要说明两种工作模式。上篇文章中,我们提到了在二极管两端需要加偏置电压以促使雪崩效应输出信号。这两种模式对于探测不可预测的光子到达非常有用。自由运行模式可以用于粗略测量,门控模式用于更高精度测量。在自由运行模式下,APD连续检测光子。在这种配置中,不需要外部时钟(异步模式)。每次检测到光子,都会发送到一个脉冲,然后在APD上持续一个空载时间(持续时间由用户设置)。 在空载时间内,即使光子仍在撞击APD,APD也不会向外输出信号。空载时间结束后,可以探测光子。在门控模式下 ...
或 投递简历至: hr@auniontech.com