展示全部
双光子/三光子荧光显微成像专用空间光调制器
贝塞尔光束+双光子荧光实现高时空分辨率在体体积成像技术背景:活生物体的生物过程成像需要具有三维高时空分辨率率的光学显微成像手段。如,在体脑成像需要亚微米空间分辨率区分突触(synapses)、神经元用来通讯和协调活动(communicate and coordinate activity)的特定亚细胞结构等,以及亚秒级时间分辨率来追踪神经元活动。尽管在一个体积内(如跨同一神经元的树突)研究突触活动是常用的手段,但是仍然缺乏能以高时空分辨率对突触进行三维成像的方法。在体成像技术中,双光子荧光显微镜(two-photon fluorescence microscopy, 2PFM)是对大脑这样的不 ...
在双光子显微镜中,920nm是最主要的也是最多使用的波长,用来激发主要的荧光蛋白进行成像,如绿色荧光蛋白GFP,GCaMP。钛宝石可调谐激光器+电光调制器的方案因其昂贵的成本、系统的复杂性,已逐渐被单波长飞秒激光器+声光调制器方案所替代。 图一:左:Chameleon系列钛宝石飞秒激光器和Conoptics电光调制器;右:ALCOR XSight 920nm光纤飞秒激光器,集成声光调制器用于全功率调制,激光头尺寸387*151*91mm3, <7kg。 法国SPARK LASERS公司于2017年推出“ALCOR”系列飞秒光纤激光器,功率最高可达2W@10 ...
:小鼠肠道的双光子荧光显微镜图像用Sytox Green标记细胞核(洋红色),FITC滤波器;用Alexa Fluor 568 Phaloidin标记肌动蛋白丝(绿色),TRITC过滤器。两种荧光标记物同时被SCH激光器激发,用尼康的荧光滤片组过滤荧光。Image taken at ICFO-SLN the Super-Resolution Light Microscopy at ICFO- Institute of Photonics Sciences, Barcelona, Spain.综上所述,FYLA公司推出的新型、紧凑而强大的SCH全光纤飞秒激光器激光器,提供15fs的脉冲持续时间和 ...
CARS)、双光子荧光、二次谐波生成(second-harmonic generation, SHG)成像等(参见本订阅号前述多光子相关文章,传送门1,传送门2,传送门3)。这些成像方法对指示疾病状况的潜在组织结构和成分敏感。最近,由于诸如通过全息手段控制光场及控制光在复杂介质中的传输等波前整形技术的发展,使得用细的多模光纤作为激光扫描显微内窥镜的探头成为可能。当前不足:多模光纤不能够保持光的偏振态,现有的保持光纤偏振态的方法都很复杂。而使用偏振光可以观测到二阶非线性极化率张量。二阶非线性极化率张量能反映样品的组成、手性和结构组织(例如局部原纤维取向)。文章创新点:捷克共和国CAS科学仪器研究 ...
1436Hz纯相位空间光调制器在双光子/钙离子成像中的应用一、引言双光子成像是利用双光子吸收的一种成像技术,双光子吸收是指原子或分子在时间和空间上同时吸收两个光子而跃迁到高能级的现象。因此反应概率远小于一般的单光子吸收,它的几率正比于光强度的平方。神经元钙成像(calcium imaging)技术的原理就是借助钙离子浓度与神经元活动之间的严格对应关系,利用特殊的荧光染料或者蛋白质荧光探针(钙离子指示剂,calcium indicator),将神经元当中的钙离子浓度通过双光子吸收激发的荧光强度表征出来,从而达到检测神经元活动的目的。美国Meadowlark Optics公司专注于模拟寻找纯相位空 ...
第二代微型化双光子荧光显微镜FHIRM-TPM 2.0,其成像视野是第一代微型化显微镜的7.8倍,同时仪器还具备了三维成像能力,能有效获取小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。FHIRM - TPM 2.0成像视野拓宽至420 x420平方微米,微透镜工作距离延长至1 mm,实现无创成像;嵌入可拆卸快速轴向扫描模块,该扫描模块采用了Mirrorcle推出的MEMS扫描镜(MEMS扫描镜 、MEMS扫描镜开发套件),全部由单晶硅制成,也就是说这种设计使运动部件不包括任何易出故障的部件,例如,金属、聚合物、压电材料等。 ...
,如共聚焦或双光子荧光,通过使生物组织在生理条件下的高分辨率成像成为可能,已经彻底改变了生命科学。激光扫描通常是用一对振镜或声光调制器来完成的。在这些扫描模式中,通过以光栅方式逐点逐行移动激光束来重建图像。这种方法的缺点是时域分辨率受到扫描器有限响应时间的限制。即使有可能提高设备的扫描速度,也会出现一个更基本的限制。为了以更短的每像素停留时间(即光束停留在样品中某一点并从该点收集光信号的时间)来维持足够的荧光信号,通常需要增加激光强度。然而信号采集的速率受到存在的发色团分子的数量和它们被激发的频率的限制。因此即使在完全没有光损伤的情况下,激发强度也不能不断增加以实现更快的扫描或更短的停留时间, ...
溶液中扫描的双光子荧光光斑采集的光子数(像素停留时间,3.2µs),内嵌扁平切割光纤与NA = 0.66, ψ = ~4°的锥形光纤;FF图中的等值线显示锥形光纤收集到的zui大光子数。比例尺,500µm。e, NA-0.66 锥形光纤在pbs -荧光素溶液中的光子收集的等距线(顶部色条,每个像素的光子数;停留时间,3.2µs);等值线在10、20、50和100光子处绘制。比例尺,500µm。f,上,远场成像系统示意图。L1、L2、L3,成像镜;BPF,带通滤波器;NBF,近红外阻断滤波器;sCOMS,科学互补金属氧化物半导体。底部,纤维输出小关节的远场图像显示,当光源沿着锥形光纤移动时,直径 ...
蛋白则可实现双光子荧光显微。双光子显微镜的优势在于:1. 漂白局限于焦点处:因为荧光激发只发生在物镜的焦点上,所以相对于激光共聚焦显微技术就不需要共聚焦针孔了。这样提高了光的检测,而且光漂白只发生在焦点上。焦点外的光漂白和光损伤很小。2. 提高信噪比。激发光波长和发射光波长具有很大的差别,提高了信噪比 。3. 更容易穿透标本:红外波长的光不易被细胞散射,能穿透更深的标本。 昊量光电为双光子显微、多光子显微提供各种关键部件,双光子用780nm、920nm、1030nm飞秒激光器,三光子用1300nm、1550nm、1700nm飞秒激光器、多光子专用空间光调制器,显微光学自适应系统,钛宝石飞秒激光 ...
或 投递简历至: hr@auniontech.com