密度。对于大视场系统,测量的空间均匀性是由栅边位置分布或倾斜决定的。在大尺寸传感器中,门信号的倾斜和高频信号切换期间可能的电压下降导致阵列的门边缘非均匀性。随着栅极长度的增加,上升边缘倾斜明显缩小(在表1的Z后一行旁边)。这种效应可以归因于信号转换期间电源电压波动水平的差异。第①门信号跃迁(对应于大门的下降沿窗口自门推进对激光触发)导致门信号下降空间电源电压不平衡树,结果在第②斜门信号转变,在这种情况下,上升的边缘。随着栅极长度的增加,在较长的过渡延迟期间,电压降的较好的恢复降低了歪斜。由于栅门不均匀性的来源是确定的,它可以通过测量后的校准校正,如下一节所述。闸门性能的另外两个关键参数是上升和 ...
点或大孔径小视场系统的轴外点,只要根据轴上点光线的追迹结果,就能通过计算正弦差值来判知其 像质。远离光轴的点会产生所有像差,因此需对轴外点进行全部像差的计算。这种计算至少应对边缘视场和 0.707视场点进行,每点的孔径取值与轴上点相同。对于绝大多数能以二级像差表征高级像差的光学系统,以上计算已足够。对于那些不能忽略高级像差的系统,计算的光线数应该有所增加。 一般计算六个视场点,取值为 Kw = -1,-0.85,-0.707,-0.5,-0.3和0。上世纪80 年代以前计算机软、硬件条件还比较差,设计条件十分有限,编制软件时也必须考忠到计算机内存容量、计算时间等限制,一般除Kw =0的轴上点外 ...
,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Mead ...
、相对孔径和视场都较大时,初始解与Z后的结果之间,差别就会更大。这表明,从一个初始解到成为一个可实用的解,尚需进行大量的像差校正和平衡工作。由于光学系统的种类很多,要求不一,其结构型式又千差万别而具各自的像差特征,因此我们必须了解校正光学系统像差的原则和常用方法。一、各光组以至各面的像差分布要合理。在考虑初始结构时,可将要校正的像差列成用P、W表示的方程组,这种方程组可能有多组精确解,也可能是病态的,或无解。若是前者,应选一合理的;若是后者,应取Z小二乘解。总之,有多种解方程组的算法可以利用,在计算机上实现并不困难。然后,应尽量做到各个面上以较小的像差值相抵消,这样就不致于会有很大的高ji像差 ...
透镜是一个大视场、小相对孔径的物镜,并且应是线性成像物镜。透镜后扫描就是扫描器位于透镜后面,由激光器发出的光束首先被聚焦透镜聚焦,然后经置于焦点前的扫描器使焦点像呈圆弧运动。这类聚焦透镜通常是小视场、小相对孔径的望远物镜,前者物镜设计困难,但其他问题的处理则很简单。后者物镜的设计是简单的,但由于像面是圆弧形的,处理就很困难。因此,要求高的扫描装置通常采用透镜前扫描。线性成像物镜介绍什么是线性扫描成像物镜?首先,由于扫描元件的运动被以时间为顺序的电信号控制、为了使记录的信息与原信息一致,像面上的光点应与时间成一一对应的关系,即理想像高与扫描角成线性关系,有但是,一般的光学系统,其理想像高为使以等 ...
,获得一维线视场的空间信息,并利用机械运动完成沿轨方向扫描实现二维空间信息的获取,同时线视场的光谱信息在面阵探测器的二维获得。图1推扫式高光谱成像原理线阵推扫的成像方式,在具有高速成像的同时,同一时间获得目标区域的所有光谱信息数据,保证每一个空间像素的光谱纯度,为客户提供真实准确的高光谱数据。通过选择感兴趣波段,芬兰SPECIM的FX系列高光谱相机还具有高速数据采集度。且涵盖机载、实验室和地面端等方面,光谱范围覆盖紫外、可见光近红外、短波红外、中波红外和热红外(UV、VNIR、SWIR、MWIR、LWIR)等波段。图2FX系列高光谱,FX10(400-1000nm)/FX17(900-1700 ...
下F数为)大视场的远心光学系统,要求具有一定的负畸变,在整个视场上有均匀的光强度和分辨率,不允许轴外渐晕存在,并要达到衍极限性能。玻璃材料的质量与透镜表面的均匀性要求比一般透镜更为严格。相关文献:《几何光学 像差 光学设计》(第三版)——李晓彤 岑兆丰更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊 ...
中孔径光阑和视场光阑是任何光学系统都具有的两种主要光阑。有些系统中还有渐晕光阑和消杂光光阑。孔径光阑、入射光瞳和出射光瞳限制轴上成像光束立体角的光阑,称为孔径光阑(简称,孔阑)或有效光阑。孔径光阑经由前面的光组在物空间形成的像称为入射光瞳,简称入瞳。完全决定进入系统参与成像的最大光束孔径,是物面上各点发出进入系统成像光束的公共入口。孔径光阑经由后面的光组在像空间形成的像称为出射光瞳,简称出瞳。是物面上各点发出的成像光束经过光学系统后的公共出口。合理的选择系统孔径光阑的位置可以改善轴外点的成像质量。同时,当光阑的位置改变时,光阑的口径也要随之变化,以保证轴上点光速的孔径角度不变。孔径光阑的口径的 ...
,通过光斑在视场内的nm级位移来实现样品的成像。这种方式可以方便的和磁场,低温,CVD等其他设备结合在一起,实现“绝对”的原位测试,避免位移平台本身重复精度累积带来的成像扭曲和定位偏差。而全新推出的光子反聚束测量模块,在原本拉曼光谱、荧光寿命、光电流成像的基础上新增光子反聚束功能,在方便快捷的进行零声子线的测试的同时,还可以完成光子反聚束的测量,极大的简化色心的搜寻流程,迅速判断制备工艺水平。该模块有助于研究者用拉曼光谱和光致发光(PL)成像来表征样品,快速确定目标区域(可能有单光子源的区域),随后在同一仪器来进行反聚束实验。典型案例:对已经进行过氮离子注入处理过的纳米级金刚颗粒进行光谱分析, ...
阴极对不同的视场接受的光照比较均匀,所以成像物镜应尽量设计成像方远心光学系统。对于目镜来说,荧光屏可以看成是自身发光的图像,孔径光阑只要与眼瞳匹配即可。被动式红外系统本身不带有红外光源,而是直接探测目标发出的红外辐射。凡是绝对零度以上的物体都会发出红外线,但由于不同的物体之间、物体的不同部位、以及物体与环境之间温度不同,发射的红外线的波长和强度也就各不相同。温度较低的物体发出的红外线主要分布于远红外区,而温度较高的热源如发动机等发出的红外辐射波长在中红外区,辐射强度也相当高。利用这些辐射特性的差别,并通过对红外光进行光电、电光转换,可以得到人眼可视的图像。因此,这种图像反映的是目标的辐射温度分 ...
或 投递简历至: hr@auniontech.com