摄影系统及其物镜的光学成像特性摄影系统的工作原理摄影系统主要由摄影镜头、可变光阑和感光底片三部分组成。摄影镜头将位于无限远或准无限远的景物成像在感光底片上,可变光阑起到调节光能量以适应外界不同照明条件的作用。其系统结构如图所示。摄影系统中,可变光阑即为系统的孔径光阑,底片框为视场光阑。为保证轴外光束的像质,可变光阑的实际位置大致设在摄影物镜的某个空气间隔中。孔径光阑的形状一般为圆形,而视场光阑的形状为圆形或矩形等。摄影物镜的光学成像特性摄影物镜的光学成像特性主要由三个参数决定,即焦距 f' 、相对孔径 D/f' 和视场角 2ω。焦距 f'物镜的焦距决定了物体在接收器上成 ...
望远系统及其物镜的光学成像特性1.望远系统的工作原理望远系统是用来观测远距离物体的光学系统,由物镜和目镜组成。其特点是:物镜的焦距大于目镜的焦距,且光学间隔 Δ=0。从无限远物体 AB 发出的平行光线经望运物镜后,在物镜的像方焦平面上成一个实像 A'B',它正好位于目镜的物方焦平面上,经目镜成像在无限远处,供人眼观察。该系统中,物镜框是孔径光阑,设在一次实像面处的分划板是视场光阑,目镜往往是渐晕光阑,其大小影响轴外点成像的渐晕系数。若图像接收器不是人眼,而是光电器件(如 CCD 及 CMOS 器件等),则可将它置于实像平面 A'B' 处。望远系统的视觉放大率 Γ ...
显微系统及其物镜的光学成像特性显微系统的工作原理显微系统是用来观察近距离微小物体的光学系统。如图所示,它由物镜和目镜组成。其特点是:物镜和目镜的焦距都很短,且光学间隔△(物镜的像方焦点到目镜的物方焦点间的距离)较大。使用时,将物体 AB 置于物镜一倍焦距以外少许,经物镜后成一个放大的、倒立的实像 A'B',且位于目镜的物方焦面上或一倍焦距以内少许,经目镜成像在无限远或明视距离处,供人眼观察。在生物显微系统中,物镜框是系统的孔径光阑,设在一次实像面处的分划板是视场光阑,目镜住往是海晕光阑,其大小影响轴外点成像的渐晕系数。而对于测量用显微系统,孔径光阑没在物镜的像方焦平面上,以形成 ...
OE放置在与物镜和检镜后孔径共轭的平面上(图1A)。这个元件在光程中被望远镜跟随,这是确保从DOE出现的小束也在检镜处重新连接在一起所必需的,允许每个单独的小束保持准直,并微调-小束传播的角度。当使用偶数量的波束时,我们通过机械阻塞消除了零级波束。虽然从DOE发射出的每个小束都与射入DOE上的激光束的直径相同,但随后的望远镜产生了一个副作用,即每个小束的大小与望远镜的功率成正比。因此,我们用另一台望远镜预先缩小或预先扩大入射激光。由于我们的系统已经在光路的早期使用了望远镜,使光束通过针孔(一个空间滤波器,确保光束截面轮廓的圆度;图1B,元素3),我们利用同样的望远镜,通过简单地改变该望远镜的焦 ...
远镜和显微镜物镜等小像差系统。这类系统是一种视场很小而孔径较大或很大的系统,应该保证轴上点和近轴点有很好的像质。所以须校正好球差、色差和近轴彗差,使最大波像差不大于 1/4 波长,符合瑞利判断的要求。对于球差,我们若想得到容限计算式。有二种情况:1.当系统仅有初级球差时,其所产过的最大波像差(经 离焦后)由以下公式来决定。令其小于或等于 1/4 波长,即可得边光球差的容限公式为上式的严格表示应为2.当系统同时具有初级和二级球差时,在对边光校正好球差后,0.707 带的光线具有最大的剩余球差。作 的轴向离焦后,系统的最大波像差由以下公式来决定,令其小于等 手1/4波长,即可得 时的带光球差容限为 ...
用10倍倍率物镜的光学显微镜可以获得>1毫米的视野,但使用压电台则无法获得这些视野。二是这些级的机械共振频率通常将较大扫描速度限制在每行至少数十毫秒(或更高),这意味着它们至少比波束扫描系统慢一个数量级。尽管有这些限制,样本扫描的简单性使它在许多情况下成为一个可行的选择。样品扫描系统的光学吞吐量也非常高,因为需要的光学是物镜。当发射束被进一步分析时,样品扫描也会有好处,例如,通过光谱仪,在光谱仪中,光束的移动会造成伪影。另外也可以通过扫描样品上的组合激光焦点并记录CARS或SRS信号作为位置的函数来形成图像。激光扫描是通过一对通过线圈的电流产生角度偏转的振镜来完成的。普通非谐振振镜的扫描 ...
,只使用一个物镜,通过分束器检测信号。泵浦脉冲和斯托克斯脉冲由延迟线同步,由二色镜共线组合,通过扫描单元后由显微镜物镜聚焦在样品上,透射光由一个相似的物镜收集。对于CARS,一系列短通和缺口滤波器选择反斯托克斯光,这是用光电倍增管测量。对于SRS,将高频调制器插入到泵浦光束(用于SRG检测)或斯托克斯光束(用于SRL检测)上,并将由长通(短通)和陷波滤波器序列选择的斯托克斯(泵浦)发送到光电二极管和锁相放大器,后者同步解调并测量SRG (SRL)。原则上考虑到结构的相似性,CARS和SRS信号可以在同一个实验装置上检测到,甚至可以同时检测到。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量 ...
以由高倍显微物镜聚焦在样品表面形成微米直径的光斑,从而实现微米级分辨率的加热和温度探测,因此该方法较大地放宽了对样品尺寸的限制。另外基于热反射法的实验可建立多层结构的三维各向异性传热模型,因此该方法不再局限于测量特定厚度的悬空薄膜材料,还可同时测量有衬底的薄膜材料以及块体材料。图1:传统FDTR光路示意图(其中泵浦光波长488nm,探测光波长532nm,泵浦光通过EOM进行调制)[1]TDTR是一种使用超快脉冲激光器的非接触式热导测量技术。由一束泵浦脉冲激光聚焦照射至样品表面,样品对其吸收会导致样品表面的温度偏移。而探测光脉冲相对于泵浦脉冲具有固定的延迟时间,而且该延迟时间是由机械平移台控制, ...
力的观察者,物镜的像应与目镜的物方焦面重合。前面我们知道,目镜的出瞳总在其像方焦点之外与之很靠近的地方,它与目镜较后一面的距离称镜目距,它是目镜的一个性能参数。为使眼瞳能与出瞳重合,镜目距不应小于 6-8毫米。各种型式的目镜,镜目距相对于焦距有比较一定的值,决定了可能应用的较高倍率。在目镜的物方焦面上设置视场光阑,它到目镜第①面的距离称目镜的工作距离,不能太短。尤其在测量用显微镜中,此距离应保证近视眼观察时不能因目镜调焦而碰到分划板。由于物镜的高倍放大,目镜只承担很小的光束孔径角,但视场相对较大,因此显微镜目镜属短焦距的小孔径大视场系统,设计时首先应考虑轴外像差,主要是倍率色差、彗差和像散的校 ...
和100 X物镜获得的蓝宝石上硅薄膜的拉曼光谱拉曼测量是在配备532 nm和785 nm激发激光器的后向散射拉曼光谱仪中进行的。532 nm激光直接耦合到显微镜光学器件,而785 nm激光是光纤耦合的。自由空间光学将激光引导到光学显微镜(Olympus BX-53)上,光学显微镜配备了10× (NA = 0.30)、50× (NA = 0.50)和100×物镜(NA = 0.80)。通常情况下,使用100×物镜,在532 nm激光的样品上产生直径小于1 μm的激光光斑。两个中性密度滤光片允许激光强度分别降低10倍或100倍。光谱仪(Horiba iHR 320)采用1800g /mm衍射光栅和 ...
或 投递简历至: hr@auniontech.com