折射式望远镜物镜一般说,望远镜物镜的视场较小,例如大地测量仪器中的望远镜,视场仅 1~2度;天文望远镜的视场则是以分计的;而一般低倍率的观察用望远镜,视场也只在10 度以下。但物镜的焦距和相对孔径相对较大,这是为保证分辨率和主观亮度所必需的,可认为是长焦距、小视场中等孔径系统。因此,望远镜物镜只需对轴上点校正色差、球差和对近轴点校正彗差,轴外像差可不予考虑,其结构相对比较简单,一般有折射式望远镜物镜、反射式望远镜物镜、折反射式望远镜物镜,这篇文章主要介绍折射式望远镜物镜。这类物镜要达到上述像质要求并无困难,但要求高质量时,要同时校正二级光谱和色球差就相当不易。后者常只能以不同程度地减小相对孔径 ...
反射式望远镜物镜一般说,望远镜物镜的视场较小,例如大地测量仪器中的望远镜,视场仅 1~2度;天文望远镜的视场则是以分计的;而一般低倍率的观察用望远镜,视场也只在10 度以下。但物镜的焦距和相对孔径相对较大,这是为保证分辨率和主观亮度所必需的,可认为是长焦距、小视场中等孔径系统。因此,望远镜物镜只需对轴上点校正色差、球差和对近轴点校正彗差,轴外像差可不予考虑,其结构相对比较简单,一般有折射式望远镜物镜、反射式望远镜物镜、折反射式望远镜物镜,这篇文章主要介绍反射式与折反射式望远镜物镜。一、反射式望远镜物镜反射式物镜主要用于天文望远镜中,因天文望远镜需要很大的口径,而大口径的折射物镜无论在材料的熔制 ...
的标准显微镜物镜成本的十分之一。“直接从光纤创建贝塞尔光束的能力可用于粒子操纵或STED显微镜,这是一种产生超分辨率图像的技术,”Lightmant表示。“我们的制造方法还可用于通过在其上打印智能小结构,将廉价镜头升级为更高质量的智能镜头。”为了制造微型光学设备,研究人员使用了一种称为3D直接激光打印的制造技术。它使用具有飞秒脉冲的激光束在光敏光学材料中产生双光子吸收。只有发生双光子吸收的微小体积内才会变成固体,从而提供了一种创建高分辨率3D元素的方法。虽然这种3D直接激光打印已经使用了一段时间,但在光纤尖端上制造如此小的光学器件时,很难获得正确的比例和对齐。“在开始制造过程之前,我们能够通过 ...
使用60X油物镜收集的。使用specim高光谱相机和CytoViva专有数据采集软件对细胞进行线扫描成像。一个自动显微镜平台将样本图像移动到与specim sCMOS相机集成的specim V10E分光镜的狭缝中,创建一个高光谱数据立方体。图2是右上角一个单元格的放大图像。这些图像代表了CytoViva的EDF显微镜照明技术的能力,因为它们产生了嵌入细胞中的纳米级实体的高信噪比图像。图1. 细胞中AuNPs的高光谱图像图2. 细胞中AuNPs的放大图像图3展示了该系统可采集和分析的光谱数据。白色曲线代表细胞,红色曲线代表功能化纳米颗粒独特的光谱指纹。光谱指纹可以对样品中的纳米颗粒进行映射(见图 ...
大多采用显微物镜和成像透镜组成的成像放大系统。放大成像的原理如下图所示 ,将样品放置在物镜的工作距离处,按照几何光学成像原理在成像透镜的后焦面成放大的实像。成像椭偏仪放大倍率原理图其中物镜内部有很多透镜组合而成,f '为物镜 的等效后焦点,f为成像透镜的焦点。系统的放大率可以根据成像透镜的焦距获得,计算公式为式中 :Le为系统的实际放大倍率;Ld为物镜的设计放大率;ft为成像系统中成像透镜的焦距;fw为计算理论放大率时和物镜耦合的成像透镜的焦距。相机探测到的样品的面积可以根据放大率求出,计算公式为式中:s为样品在相机中的实际探测面积;h、w 分别为相机感光芯片的高、宽。由于样品和物镜成 ...
ps。在通过物镜聚焦到样品上之前,两束光束是平行偏振的,并由二向色镜共线叠加。半波片和格兰-泰勒偏振器的组合用于调节两束光束的功率。为了获得更好的信噪比(SNR),我们使用频率为600至800 Hz的斩波轮(见图1 (a))进行信号调制。这个频率也被用作锁相放大器的参考。对于静态测量,斩波轮位于位置(A)。对于时间分辨测量,存在两种信号调制的可能性:在第一种情况下,斩波轮位于位置(A),两个波束都被斩波。其次,为了进一步提高信号质量,还可以只截断泵浦波束(见图1中的(B))。在这种情况下,锁相放大器仅检测泵浦引起的克尔信号变化,从而丢失绝对值。样品安装在一个无磁扫描压电工作台,扫描范围160 ...
反射到显微镜物镜上,物镜将光聚焦到低温恒温器中的样品上。物镜的放大倍率为60,数值孔径为0.70,工作距离约为2.5 mm。为了在切割边缘平面上获得尽可能小的激光光斑直径,必须确保显微镜物镜的整个孔径均匀照射。因此,光束在离开二极管激光器后用望远镜加宽。样品上的光强可以借助中性密度滤光轮来控制。测量时使用的探测激光功率约为10μW。激光在到达样品之前被格兰-汤普森棱镜线偏振。光从样品表面反射后,偏振面旋转克尔角θK,用沃拉斯顿棱镜将反射光分成两束正交偏振光束,用差分放大器测量相应的光强差来检测。该差分信号与克尔角成正比,因此也与砷化镓导带中的自旋极化成正比。铁磁触点的磁化以及GaAs中的自旋系 ...
修改的部分是物镜。当安装Bertrand透镜时,管状透镜组件可以进行进一步修改。贝特朗透镜将使用户能够定位在后焦平面的照明点,并在实施时,将增加显微镜的易用性。光源遵循图2所示的路径。激光器与多模0.2 NA光纤耦合。穿过纤维后,光通过准直透镜、格兰-汤姆逊偏振器和聚焦透镜,然后通过偏振分束器反射到样品上。光束聚焦在物镜的后焦平面上,然后被物镜准直以照亮样品。这种照明是由相干激光提供的,需要抖动才能获得均匀的照明。图2由于磁光克尔效应,照射样品的光在偏振、振幅和相位上发生变化。这些变化取决于磁化的方向。这种光随着磁化方向的变化,通过物体、偏振分束器和分析仪反射回来,然后被管状透镜聚焦到CCD上 ...
的样品,如果物镜没有足够的焦深,来自焦平面上方和下方的样品平面的光就会被检测到。失焦的光线会增加图像的模糊度,从而降低分辨率。在荧光显微镜中,视野中的任何染料分子都会受到刺激,包括离焦平面中的染料分子。共聚焦显微技术利用共聚焦系统有效地排除了焦面以外光信号的干扰,提高了分表率,实现了光学切片。目前,共聚焦显微成像技术是生物医学领域非常重要的分析工具,借助该技术,研究人员能够对细胞中的特定成分进行光学切片和三维(3D)重建。自20世纪60年代引入柔性胃肠(GI)内窥镜检查以来,内窥镜成像技术不断取得进步。在过去的几十年中,内窥镜已被用于以微创或无创的方式观察空腔内部或人体内部器官的表面,以进行诊 ...
转像系统设在物镜的实像平面后面,使倒像再一次倒转成为正像的透镜系统称为透镜转像系统。有单组和双组两种形式,如下图1和下图2所示。后一种形式中一组的物方焦平面与物镜的像面重合,被倒转过来的像位于第二镜组的像方焦面上,在二镜组间光束是平行的。显然,透镜转像系统使镜筒长度大为增加,适宜在需有长镜筒的场合下使用。图1图2透镜转像系统一般采用负一倍的倍率以保持原望远镜的倍率不变。通常单独校正像差。负一倍单组转像系统所承担的相对孔径是物镜的二倍,为校正轴上宽光束像差只能取较短的焦距,但随之需承担较大的视场,对轴外像差不利,难以达到预期的像质。而负一倍双组转像系统一般采用二个相同且对称设置的双胶合镜组,并在 ...
或 投递简历至: hr@auniontech.com