长的材料之间折射率的变化足以创建一个波导。介质材料也沉积在QC脊周围的杂草材料上,引导注入的电流进入QC增益介质。埋地异质结构波导在产生光时有效地从QC活性区域除去热量。虽然量子级联增益介质可用于产生超发光结构中的非相干光,但它常用来与光腔结合形成激光器:法布里-珀罗Fabry–Perot lasers这是简单的量子级联激光器。首先用量子级联材料制备光波导以形成增益介质。然后,晶体半导体器件的两端裂开,在波导的两端形成两个平行的镜子,从而形成Fabry-Pérot谐振器。从半导体到空气界面的解理面上的剩余反射率足以创建一个谐振器。Fabry-Pérot量子级联激光器能够产生高功率,但在更高的工 ...
不晕点。单个折射球面存在三对无球差的共轭点,其中l=l’=0和l=l’=r这二对显然满足正弦条件,而由l’=(n+n’)r/n’和l=(n+n’)r/n这一对,可得所以,以上三对共轭点都是满足正弦条件的齐明点。正弦条件以轴上点完善成像为前提。但从球差的讨论可知,实际的光学系统仅能对物点发出的光束中的一个带或二个带的光线校正球差,因此,即使是轴上点也不可能是真正的完善成像。此外,轴上点球差校正不佳或不能校正时,成像也不完善。此时,轴外近轴点当然也不可能完善成像,充其量只能要求它的像质与轴上点一致,即具有相同程度的成像缺陷,我们称之为等晕成像 (aplanatic image formation) ...
生多次反射和折射,这些相同频率的光会发生干涉,形成多光束干涉。光从折射率为n_0的物质中,以角度为θ_1的入射角进入间隔距离为d的平行板中,平板中的折射率为n_1,由此光在板内的折射率为θ_2,在两块平板间经过多次反射和折射,光程差相同的同频光会发生干涉。光程差引起的相位差使投射光强和反射光强遵从干涉强度分布的公式,即艾里公式。测量反射光强可测量d的大小,这就是光纤法珀腔压力传感器的基本原理。而从结构上来看,法珀干涉仪的结构如下图所示:上图的结构解释,G_1和G_2是两块相互平行的高反膜,间距依然设为d,反射光强I_R由入射光强I_0、高反膜反射率、相位差、入射光波长和板间物质折射率所决定,同 ...
;另一方面,折射球面产生的彗差还与光阑位置、即主光线的入射角ip有关。如果光阑位于球心,相当于主光线与辅轴重合,即ip=0,则不论球差如何,都不会产生彗差。实际上,光学系统的各种像差总同时存在,所以在计算彗差时,并不能像定义的那样,真正求出一对对称光线的交点相对于主光线的偏离,而是以这对光线与高斯像面交点高度的平均值与主光线交点高度之差来表征的。如上图所示,对于子午彗差,可表示为对于弧矢彗差,因一对对称的弧矢光线与高斯像面的交点在y方向的坐标必相等,故有彗差是轴外点成像时产生的一种宽光束像差,是与视场和孔径均有关系的。为全面了解光学系统对彗差的校正情况,需要计算设置多个特征视场和特征孔径来计算 ...
图像伪影导致折射率变化的影响。此外,共振和非共振图像的数字减影是预发送并允许获取背景校正图像 。作为替代获取背景校正的CARS 型号的技术 ,频率调制FM CARS 出现了。在 FM CARS 中,谐振和非谐振贡献CARS 信号由两个波长交替的泵浦脉冲和一个固定在波中的斯托克斯脉冲测量长度。锁定放大器 (LIA) 检测然后用于谐振之间的即时差异计算以及两个交替泵浦波的开关频率下的非共振 CARS 信号。因此,FM CARS 允许以增强的灵敏度高速采集背景校正的 CARS 信号。基于不同固态光源组合的FM CARS的首次实验实现提供调频泵场和斯托克斯场。尽管如此,结合这些可测量低至 0.05% ...
成电场,晶体折射率会随着电场的改变而改变。光束经过晶体,相位随之发生改变。当一个相位调制器和马赫泽德干涉仪或者调制器相互组合,光束经过干涉仪被分成两路,其中一路中放置了扑克尔效应。当两路光束再次汇聚后相互相长或者相消,以此达到光强调制的效果。电光吸收调制电光吸收的方法时建立于Fraz-Keldysh和Stark效应,由于施加外部电场导致光的吸收,而且随着外部电压的改变,吸收率发生变化。吸收体对于入射光透明的,但是当外部施加电压,能带间隙变小,当光的能量超过能打间隙时吸收光子,衰减光的传输效率。当外加电压被调制后,材料的吸收率和输出光强也会被调制。因为大部分能量被转化为热量,因此为了确保精确的调 ...
响,所以介质折射率的变化只影响光波的相位,即光波通过介质折射率大的部分时,光波波阵面将延迟,通过介质折射率小的部分时,光波波阵面将超前,由此导致光波波阵面产生了凹凸,由原来的平面变为一个折皱曲面,同时改变了光的传播方向,如下图所示。在介质另一侧,光波波阵面上各子波源的相干作用使光波被分列成一组离散型的衍射光,上述过程即拉曼-纳斯衍射。拉曼-奈斯衍射的结果是光波在远场分为若干级衍射光,各级衍射光对应不同的衍射角和衍射强度,它们以 0 级光为轴成对称分布,且同级次衍射光的强度相等。2,布拉格衍射采用较高的声波频率,增大声光互作用长度,并且使光束与声波波面成一定角度入射,则光波通过介质时会与多个声波 ...
是由高功率光折射率的变化,从而导致光学相位的改变。三、COTDR性能参数通常将信号功率与探测器输出的噪声功率之差定义为动态范围,动态范围可通过提升探测光功率来增加,但由于非线性效应存在,,探测光的功率提升有限。空间分辨率从设备角度上来说由光脉冲宽度决定,而从系统角度上而言,是和探测器噪声,相干瑞利噪声等相关的。而对付这些噪声,有各不相同的方法,比如,通过降低探测器温度降低热噪声,稳定电路控制散粒噪声,设置带通滤波降低ASE噪声,扰动偏振态用以控制偏振噪声,等等。四、COTDR的应用最近汤加火山爆发,随后较长时间内,汤加与外界“失联”,起因是火山活动使汤加海底电缆损坏。这个事情告诉我们,对于各大 ...
该不会产生双折射,并且光纤的偏振态在传播过程中是不会改变的。然而,在实际中,常规光纤在生产过程中,会受到外力作用等原因,使光纤粗细不均匀或弯曲等,就会使其产生双折射现象。当光纤受到任何外部干扰,例如波长、弯曲度、温度等的影响因素时,光的偏振态在常规光纤中传输时就会变得杂乱无章。而保偏光纤的应用则是可以解决这一偏振态变化的问题,但它并不是消除光纤中的双折射现象,而是通过在光纤几何尺寸上的设计,产生更强烈的双折射, 来消除应力对入射光偏振态的影响。保偏光纤在拉制过程中,当线偏振光沿光纤的一个特征轴传输时,部分光信号会耦合进入另一个与之垂直的特征轴,最终造成出射偏振光信号偏振消光比的下降,从而影响了 ...
移,由于局部折射率变化;SID4 HR直接测量光束的相位,并将其转换成密度信息。得益于Phasics的技术,改善了波前测量方法,并适用于许多应用。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-5 ...
或 投递简历至: hr@auniontech.com