只有相对镜面入射角非常接近0°的光才能经过很多次的反射后不会移出谐振腔;从FP谐振腔输出的激光单模的谱线宽度随着两反射镜间距增大而减小;综上,对FP腔的尺寸可以控制输出激光的发散、波长、谱宽等。图2:F-P腔的滤波功能相关文献:[1]李耐和. 可调谐激光器种类及发展趋势[J]. 世界产品与技术, 2002(2):3.您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532,我们将竭诚为您服务。 ...
偏振、波长和入射角,以及不同的空间复用方案,已经有实现不同功能的大量多功能超表面得到报道。但是这些多功能超表面仅在一个操作空间有效,即要么透射空间或反射空间。能够独立控制透射和反射空间中的光的光学器件对于构建超紧凑光学系统具有重要意义。这是zui近基于多层超表面实现的。据报道,四层金属贴片可以协同实现偏振相关的透射/反射控制,通过精心设计使全空间内的独立光波前控制成为可能。基于类似的原理,通过同时选择入射方向和光偏振,五层等离子体超表面被证明可以产生三个波前操作。值得注意的是,这些实现了多功能全空间光控制的超表面主要在微波波段,且使用印刷电路板技术制备。然而,考虑到金属的固有吸收损耗,显然将上 ...
即在波长谱、入射角和场景深度、特定时间窗口的某个范围上采集信息,并且其动态范围也受到限制。因此,我们可以将现有的传感器看作为一个瓶颈,阻止了一些视觉信息被采集到。光学工程师可以自由设计具有特定点扩散函数 (PSF) 的相机镜头,使用光谱选择性滤光器设计传感器像素的光谱灵敏度,或选择设计其它属性。然而,开发专用成像系统的挑战在于如何z好地设计此类仪器并利用这些工程能力。在这种情况下,将相机解释为编码器-解码器系统是有帮助的。一个或多个镜头通过其深度变化点扩展函数将场景投影到2D传感器上,从而对传感器上的场景进行光学编码,然后光谱过滤器确定如何集成色谱。通常,电子解码器从原始传感器测量中估计某些属 ...
次交互,此时入射角不满足布喇格条件,所以透射为主),然后经过四分之一波片和偏振分光片(PBS&QWP-2)共同作用反射回全息光学元件发生衍射作用(此时反射回的入射角满足布喇格条件),全息光学元件开始展现出反射镜的功能,使得光反射回后续光路(经典pancake的原理见附录)。(3) 全息光学元件制作。在AR系统里,数字图像光束和自然场景光束的合束是关键所在。最简单的合束器是一个50:50的分光片,但是对于头戴式、眼睛式的应用来说太笨重了。全息光学元件是一个轻薄的平板,其记录的是体全息图,只对满足布喇格条件(对入射角和波长明确要求)的光形成明亮的衍射再现像,对不满足此条件的光则相当于一个透 ...
射镜,也知道入射角等于反射角,但是这些理解并不能够带领我们实现多镜片成像系统的广泛应用。理解光是如何在玻璃中折射的,将让我们理解透镜以及它在成像中的决定性价值(基于反射的成像系统也是有的,Newton认为基于折射无法消除色差,制造出了基于反射的成像系统,后续也有其他人基于反射原理设计成像系统)。从这些开始,成像依托于四项基础技术的进步得到了发展,这四项技术是:光学材料(如玻璃和聚合物)、换能器(包括胶片和电子探测器,人眼除外)、光源(从蜡烛、弧光灯、白炽灯到LED和激光器)和处理技术(通过生物、电子或其它的处理技术)。今天所有的成像器材都是基于这四项技术制造而成的。在这一章节,我们根据当时对技 ...
而,这只有在入射角不太大的情况下才有效。光纤的数值孔径 (NA) 是允许的入射光线相对于光纤轴的最大角度的正弦值。它可以通过纤芯和包层之间的折射率差来计算,更准确地说,具有以下关系:请注意,NA 与光纤周围介质的折射率无关。例如,对于折射率较高的输入介质,最大输入角度会更小,但数值孔径保持不变。上面给出的等式仅适用于直纤维。对于弯曲光纤,可以使用一个近似修正方程,其中还包含弯曲半径 R 和纤芯半径:对于不具有阶跃折射率分布的光纤或其他波导,数值孔径的概念变得有问题。最大输入光线角度通常取决于输入在表面上的位置。一些作者使用阶跃折射率光纤的公式,根据纤芯和包层之间的最大折射率差来计算渐变折射率光 ...
射效率vs光入射角度②Braggrate Pass Filter, BPF(体布拉格光栅陷波滤光片)BPF只是作为BNF的另一种使用方法,常在拉曼测量系统中用于滤除入射激光的杂模,如图3所示:透过BPF的光为不符合单色和准直性条件的光。因为同样是体布拉格光栅陷波滤波片,所以BPF也有很窄的角度和波长选择性(图4展示了BPF的角度选择性),而且BPF是利用杂光透过,满足角度或单色选择性的光在BPF处高效反射;因为不符合条件杂光与所需光线方向不同,所以不需要像BNF要达到ji高的衍射效率,一般应用于拉曼测量的BPF衍射效率>90%。图3:BPF的反射滤波示意图图4:BPF的衍射效率vs光入射角度③ ...
况下,光束的入射角发生变化;这样可以防止渐晕。因此,激光扫描过程不仅决定了FOV(field of view),而且对整个扫描区域的激发效率也有显着影响。最简单的多光子显微镜版本是单焦点扫描感兴趣的区域的MPLSM系统。虽然已经报道了许多多焦点 MPLSM 系统,但我们首先以单焦点系统为例来说明光束传输到样品的问题。然后,我们将讨论范围扩大到包括多焦成像技术,并讨论由此类系统引入的一些独特问题。5.2单焦点系统在这里我们将重点介绍将轴向扫描与横向扫描解耦的系统。在该系统中,3维体积图像是通过横向平面的顺序扫描来收集的,横向平面垂直于光轴。因此,横向扫描是成像的关键。为了使物平面上的焦点横向偏转 ...
界面时,只要入射角不为零,各种色光将因色散而有不同的传播途径,结果导致各种色光有不同的成像位置和不同的成像倍率。这种成像的色差异称为色差。通常用两种按接收器的性质而选定的单色光来描达色差。对于目视光学系统,都选为蓝色的 F光和红色的C光。色差有两种。其中描述这两种色光对轴上物点成像位置差异的色差称为位置色差或轴向色差,因不同色光成像倍率的不同而造成物体的像大小差异的色差称为倍率色差或垂轴色差。如下图,轴上点A发出一束近轴白光,经光学系统后,其中F光交光轴于 A'F,C光交光 轴于 A'C。显然,这两点是A 点被蓝光和红光所成的高斯像点。它们相对于光学系统最后一面的距商分别为l& ...
界面时,只要入射角不为零,各种色光将因色散而有不同的传播途径,结果导致各种色光有不同的成像位置和不同的成像倍率。这种成像的色差异称为色差。通常用两种按接收器的性质而选定的单色光来描达色差。对于目视光学系统,都选为蓝色的 F光和红色的C光。色差有两种。其中描述这两种色光对轴上物点成像位置差异的色差称为位置色差或轴向色差,因不同色光成像倍率的不同而造成物体的像大小差异的色差称为倍率色差或垂轴色差。校正了位置色差的光学系统,只能使二种色光的像点或像面重合在一起,但二种色光的焦距并不一定就此相等,使这二种色光可能具有不同的放大率,使同一物体的像大小不等,因而仍可能存在倍率色差。光学系统的倍率色差,用二 ...
或 投递简历至: hr@auniontech.com