线的夹角称为入射角。振动方向在入射面内的叫的p偏振光,垂直于人射面的叫s偏振光。(2)偏振态偏振态有线偏振、圆偏振和椭圆偏振。上面提到,光波可以分解为xy轴电场振动矢量。然而,当光通过某一样品时,其偏振态会改变,因为Ex和Ey分量会产生一个位相差,如下图所示,1.2 光束通过样品前后的位相变化图中的相位延迟角δ即为位相差,位相差不同时,偏振态不同。我们将所有的情况都考虑,可以得到下面这个公式:当位相差为0°或180°时可以获得线偏振光。当δ=90°,并且Ax=Ay时,表示圆偏振光。当位相差是上述以外的其他情况,偏振态的矢量方向是椭圆,这种偏振称为椭圆偏振。(3)双折射双折射有两个折射率,即在不 ...
1b所示的窄入射角传播照射,从而导致磁光灵敏度的良好定义条件。实际上,通过将光纤输出定位在孔径平面的不同离轴位置来实现所需灵敏度模式的设置。应该注意的是,对于高数值孔径和高放大倍率物镜,会发生去偏振效应,导致背景强度增加。这略微降低了信噪比,并对zui佳分析仪设置产生影响,以实现zui佳磁光对比度。此外,所产生的磁光图像的对比度在很大程度上取决于物镜的光学传输特性,这决定了有效的总体可达强度,因此与相机系统的量子效率一样重要。光的散射特性和物镜的偏振质量会影响整体对比度,特别是磁光成像中的信噪比。在高磁场的作用下,物镜会产生不需要的法拉第旋转,不仅会导致额外的强度变化,还会导致信噪比的降低。通 ...
双远心全景克尔显微镜的优势这一限制可以通过使用完全分离、对称排列的照明和反射路径的倾斜显微镜装置来克服。通过这样的排列,可以获得接近zui优Kerr振幅的显著纵向域对比度。这种系统的另一个优点是光学偏振光元件可以布置在透镜和磁性样品之间。这消除了在透镜表面发生的去极化效应,以及上述的法拉第效应与磁场的应用。使用变焦镜头,可以实现可变视野。图1.(a)双远心全景克尔显微镜的光路(b)饱和后磁场变化的磁电传感器元件沿传感器长轴形成的磁畴。磁性样品的平行照明是由一个准直的大功率LED光源实现的。(a)指出了可旋转偏振器、补偿器和分析器的位置。光圈光圈位于前光学透镜组的焦平面上。共轭像面相对于光轴是倾 ...
70° 的入射角度下进行 S 偏振的合并,组合后的端口每个单独的光梳初始强度约为 40%,同时避免在检测路径中出现任何谐振腔效应或脉冲重复。来自组合端口的光被衰减并进行光纤耦合,然后在快速光电二极管(Thorlabs,DET08CFC)上检测两个光梳的拍频信号,该光电二极管处于其线性响应区域。为了以组合线分辨率提取气体靶的光谱信息,我们采用[44]的方法:将干涉图周期进行相位校正,通过用组合因子Δfrep/frep缩放时间轴并相加将其转移到光学域。将这个相干平均信号的傅里叶变换与频移相结合,可以在光学频率域内获得组合线分辨率的光谱信息。双梳激光器的重复频率frep确定了单个光学组合线之间的间 ...
K,受温度、入射角和入射光束偏振态的影响。入射角变化1°,NPBS的和变化约5°,和K变化约5%,且变化规律不同步;而温度引起的相移变化率约为0.12(°)/℃假设×K和+分别变化1%和1°,式(19)给出的椭偏参数误差约为:此时引入的膜厚测量误差约为1nm。NPBS2引入的误差分析根据式(17),用图3描述了NPBS2的方位角对椭偏参数测量误差的影响。(a)幅值比误差(b)相位差误差图3 NPBS2方位角对椭偏参数误差的影响由图3可知,NPBS2的对准误差对相位差测量影响较大。当θ=0.1°时,椭偏参数误差约为:根据椭偏基本方程和薄膜参数,式(21)的椭偏参数误差大约导致1~2nm的膜厚测量 ...
A0的光束以入射角θ0入射,经过多次反射与投射,透射出相互平行的光束。设高反膜的反射率为,因此可得第1束透射光的振幅为,后续依次为由等倾干涉可得,相邻的透射光束的光程差为:由此引起的相位差为:若第1束透射光的初相位为零,因此各光束的相位依次为透射光的振动可以用复数进行表示:我们计算其和振动,其中利用了等比求和公式:其中因此可得:求合振动强度时,针对分式项需要用到他与共轭复数的乘积:因此合振幅的平方为:其中 称为艾里函数,称为精细度,体现出干涉条纹的精细程度。当P为固定值时,A2与相关。当时为zui大,时为zui小。因此越大时,可P见度越显著。图4 不同精细度的艾里函数图目前,激光干涉仪技术正处 ...
光在界面1的入射角,、如图1-1所示,分别是在所测薄膜、基底中的折射角。在图1-1的模型中,经过多次反射折射后,由多光干涉的公式可得zui终反射系数为:其中,d是膜厚,λ是真空中光的波长,2δ是相邻两束反射光的相位差。振幅、相位是描述光波偏振状态的两个参数,在椭偏仪中用Ψ、△来表示。其取值范围是:0≤Ψ≤π/2,0≤△<2π。总反射系数比值定义为ρ,ρ与(Ψ,△)、(Rp,Rs)关系式如下:其中,tgΨ为反射前后P、S光两分量的振幅衰减比,△=δp−δs为P、S两分量相位变化差。可以清楚地看到Ψ、△直接给出反射前和反射后光偏振状态变化。在衬底、入射角、波长等确定已知的条件下,Ψ、△是膜厚 ...
非zui低点入射角观察地面时,天线平面上的线极化只对应于天线轴线上相同的线极化。在非zui低点角度,来自地面的发射必须进行偏振混合校正;该过程的详细描述见[20]的附录a。基于PoLRa的地球物理参数(如土壤湿度)检索将在未来使用原位土壤湿度传感器网络进行验证。4.讨论概述了便携式L波段辐射计(PoLRa)的设计和特性。给出了详细的技术讨论,以证明该辐射计的硬件功能符合预期,并提供了其噪声温度测量不确定度的估计。虽然使用与其他辐射计相似的架构,但PoLRa的天线设计独特,电子设备简单,功耗低,成本效益高,无需主动温度控制。由于采用了新颖的主动冷源(ACS)表征方法,这里介绍的辐射计不需要温度稳 ...
的应用(不同入射角的椭偏测量、可控气氛、不同薄膜沉积)。腔室的横截面如图1-12(a)右所示。由于三对法兰配备了熔融硅窗,所以可以进行66°、70°和90°入射角下的椭圆偏振测量。该腔体的设计可以安装在WoollamM2000旋转补偿椭圆计d的臂上,无需对仪器进行任何修改,本仪器的设计原则上与任何水平安装的椭偏仪兼容。图1-12(b)是AlexandreZimmer等人设计的基于旋转补偿的椭偏仪的耦合流池,它直接安装在测角仪上,可以实现实时采集椭偏数据和电化学数据。耦合流池,由聚醚醚酮(PEEK)制成,包括两个石英窗口,允许椭圆光束垂直经过并到达工作电极表面再反射垂直经过出去,其中椭偏光束的入 ...
度是5°,即入射角度的变化是以5°为单位进行调节的,其调节范围在0-90°。如图2-1所示,为了保证垂直入射出射,样品台的高度可以进行调节,此外整个样品台面还可以在竖直方向上进行。当进行样品测试时,第1步就是进出准直的调节,即使样品测试面在水平,当入射光垂直入射时可以垂直反射。图2-1椭偏仪实物图2.2.2在位监控1、Pb溶液体系在进行不同浓度溶液:5/10/15/20mMPb(CH3COO)2和1MCH3COONa混合溶液的实验,Pb薄膜的沉积实验用的是10mMPb(CH3COO)2和1MCH3COONa混合溶液。该混合溶液透明,但是由于CH3COO-的存在,溶液体系不稳定性,每次实验时都需 ...
或 投递简历至: hr@auniontech.com