相干拉曼技术双束光同步的粗调与细调方法对于相干拉曼技术,两束激光必须在时间和空间上结合。常用的方法是使用二向色镜和几个转向镜进行精细调整,在空间上重叠光束相对简单。通常情况下,在组合光束路径中间隔约1米的两个光阑处的重叠可用于验证空间对准。可根据CARS或SRS信号强度进行微调。基于opo的系统中的时间重叠是通过基于反向反射器的被动延迟阶段来实现的,该延迟阶段允许在保持空间对齐的同时调整两个光束中的一个的路径长度(图1)。由于使用的激光系统的重复频率通常是80 MHz,两个脉冲之间的时间周期是p = 1/f = 12.5 ns。用这个周期乘以光速,得到距离约为3.75 m。因此,为了找到时间重 ...
相干拉曼技术中常用的扫描方案扫描有两种常用的方法:样品扫描和光束扫描。样品扫描提供了一个简单的设备,但通常较低的速度和较小的视野,而光束扫描更复杂的实现,对光学系统的性能要求更高,但提供了更大的视野和更高的成像速度。在样品扫描中,整个相干拉曼光学设置是固定的,样品相对于焦点平移。这意味着光学系统可以对准一个固定的激光束,这比在一系列可能的激光束位置上对准系统更容易。为了获得高的空间分辨率,需要一个平移阶段具有较高的精度和重复性要求。通常,采用压电驱动的弯曲级。这些阶段提供的步长和重复性远远超过光学显微镜(通常小于5 nm)和较大数百微米的平移所要求的。这种制度主要有两个缺点:一是图像的较大视场 ...
相干拉曼技术中光调制方案优缺点瓦级1064 nm斯托克斯激光束使用的峰值功率可以在紧聚焦时损坏声光调制器(AOMs)。但是对于高速调制,AOM需要激光聚焦入射。这是因为驱动调制的声波必须以垂直的方式穿过激光束腰。考虑到常用声光材料的声速,10 MHz调制需要的焦点光斑小于100 μm,由此产生的峰值强度过高。宽带电光调制器的使用也可能存在问题。这是因为宽带电光调制器利用高功率射频放大器与较长的电缆连接到相对笨重的调制器。这些电缆可以发射电磁干扰,使锁相放大器不堪重负。因此,电缆和放大器的小心放置和良好的屏蔽是必要的。也可以观察到“幽灵”效应,即系统的噪音水平取决于个人站在房间里的位置,因为人体 ...
提高相干拉曼成像灵敏度的方法由于照射到样品表面的光功率受到样品损伤阈值的限制,提高CRS显微系统灵敏度的可行方法就是增加分子响应器的有效拉曼截面。对于内源性化合物,拉曼截面是分子的固有性质,当激发波长远离电子共振时,拉曼截面基本上不会改变。然而,对于外部探针,当电子共振出现在激励束的频率附近时,拉曼截面可以显著提高。共振拉曼散射原理可应用到CRS系统的光激发中,达到相应提高分子浓度的检出限的作用。这一方法要求发色团表现出与电子共振良好耦合的振动模式。如受激拉曼散射系统(SRS)所示,当激发频率在电子跃迁附近调谐时,为荧光标记目的开发的荧光团显示高达倍的振动响应的出色增强。结果是这种荧光探针可以 ...
相干拉曼显微系统的发展中遇到的新挑战尽管CRS具有非常理想的成像特性,但生物医学成像界对该技术的采用一直是一个缓慢且看似漫长的过程。CRS方法主要由一群敬业的开发人员推动,开始进入大学成像设施、神经科学实验室和临床环境。到本世纪末,CRS显微技术的商业化似乎有了足够的动力。打入市场的CRS成像系统是由奥林巴斯生产的,几年后又由徕卡微系统公司生产了专用的相干反斯托克斯拉曼散射(CARS)显微镜。人们希望CRS显微镜技术能够扩展到生物成像的其他领域,并且该技术能够作为生物研究的常规工具占有一席之地。尽管令人印象深刻的研究表明,CRS可以映射脂类以外的各种生物化学化合物,但该方法并没有轻易摆脱其作为 ...
光学基准进行相干跟踪。超低噪声OFC为高精度的、高分辨率的光谱学提供了一个通用的工具。超快光源,可以发射一系列均匀间隔的飞秒脉冲,可以作为光学频率梳,提供微波和光域之间的相位相干链接[1,2]。任意纵向模式的频率可以定义为,其中m为梳状线数(整数),为激光重复频率,为载波包络偏移(CEO)频率。这种技术的出现将光载波的相位控制技术扩展到光谱领域[3,4]。例如,精准的光学相位控制是光学原子钟铷钟[5 10]和物质量子态表征的关键元素[11 13]。虽然控制性能随着时间的推移有所改善,但仍需要本质低相位噪声锁模激光器,来满足高端基本时间常数变化应用研究的需求[14 16]。近期,长期相位稳定性和 ...
扫描,也需要相干的自由空间激光通信和光量子密钥分配链接,例如从地面到太空。本应用说明将介绍如何使用Moku:Lab的任意波形发生器制作复杂的二维扫描图案。第一部分展示了如何将AWG波形加载到Moku:Lab,以便在X-Y模式下在示波器上进行可视化。第二部分增加了一个快速转向镜和一个激光系统,以产生适合采集系统的任意扫描模式。Moku:Lab的任意波形发生器仪器Moku:Lab的任意波形发生器可以从预设的波形、输入方程或从文件中导入的点生成双通道自定义模式。支持从1mHz到125MHz的输出频率。脉冲输出可以配置为脉冲之间有高达250,000个周期的死区时间。预设波形包括正弦波、高斯波、指数上升 ...
杂光等引起的相干噪声更为严重。当傅氏变换透镜的孔径与视场较大,而焦距较短时,则无需用远距型来缩短筒长,甚至需增大两端的工作距离。此时宜采用像差校正状况更为有利的双反远距型,它可以负担更大的孔径与视场。另一类傅氏变换透镜是单组元对称或非对称型,如下图4所示。尽管变量较少,但仍然足以在较小孔径和视场下满足全部像质要求,而且有利于改善双远距型工作距离太短和相干噪声严重等缺点。图4傅里叶变换透镜的焦距约为300-1000mm,相对孔径为1/10-1/17,除特殊情况外,多属小孔径、小视场系统,可以用初级像差理论有P、W方法求初始结构参数,然后进行修改。相关文献:《几何光学 像差 光学设计》(第三版)— ...
单频CARS与SRS显微系统单频CARS/SRS显微镜较具挑战性的部分是激发源,它必须产生两个同步的激光脉冲---泵浦和斯托克斯,需具有以下几点特征:1. 频率失谐在500和之间连续变化,以覆盖所有相关的振动跃迁。这意味着至少有一个泵浦/斯托克斯脉冲是广泛可调的。例如,假设一个固定的泵浦波长为800纳米,斯托克斯必须在835和1110 nm。2.脉冲持续时间为1 - 2 ps,对应于变换限制脉冲的带宽为以这种方式匹配压缩相中振动跃迁的典型线宽。这种选择优化了峰值功率和光谱分辨率之间的权衡。较佳脉冲持续时间也可以取决于实验条件,因为已经表明,在某些情况下,响应是一个与时间相关的函数,因此信号可以 ...
(SRS)和相干反斯托克斯拉曼散射(CARS),以及表面增强拉曼散射(SERS)。图1在拉曼散射的非线性模式中,使用多个激光刺激特定的振动跃迁,从而增加信号的强度。简单地说,在SRS中,样品用自发拉曼中的“泵浦”激光照射,并结合较低频率的“斯托克斯”激光。斯托克斯激光器频率的选择使两种激光器之间的能量差(∆v)与特定振动跃迁的能量差相似,从而增强了该跃迁的发生,并增加了其信号(图1)。对于每个泵浦和斯托克斯频率组合,可以获得单个振动峰值的窄带测量。通过锁定其中一个激光器的频率并改变另一个激光器的频率,可以获得宽带或高光谱测量,因此可以扫描和检测振动跃迁的整个范围。信号强度的增加使得512 × ...
或 投递简历至: hr@auniontech.com