的能带结构、晶格振动和电子-声子相互作用等特性对制备方法、尺寸、衬底、成分、厚度、掺杂、缺陷、空位、应变、晶体相等都很敏感。此外,Z近的研究进展为研究垂直范德华异质结构(vdWHs)的不同寻常的特性和特殊的器件性能,这种异质结构是基于通过vdW相互作用将2dm按精确顺序逐层垂直叠加而成的。vdWHs不受晶格匹配和制造兼容性的限制,结合了不同2dm的优点,为新功能的设计提供了巨大的机会。为了识别2DMs和vdWHs的各种基本性质,需要一种方便的原位表征技术。在众多的表征方法中,拉曼光谱是一种快速、无损的表征方法,具有较高的空间和光谱分辨率,在实验室和大规模生产中都很适用。一般来说,2DMs中晶格 ...
3+离子与主晶格的耦合相对较强,因此与其他稀土离子相比,它的跃迁相当宽,尤其是在波长约为940 nm的标准泵浦时。这放宽了它对制造公差和泵浦二极管温度稳定性的要求。对于高功率激光器,必须通过有效发散激光过程产生的热量并首先减少热量产生,将工作物质的温度保持在合理水平。量子缺陷是热负荷的不可避免的来源之一,即泵浦能量和激光光子之间的差异。原则上,这可以通过减少四能级能量方案的两个上层和两个下层之间的能量差来最小化,在极限情况下变成两能级系统。因此,人们必须在“理想”四能级系统的低激光阈值(Nd3+ 的1.06-µm 跃迁)和减少量子缺陷但增加阈值密度的“准三级系统”之间进行权衡。水平系统(Yb3 ...
有更强的电子晶格耦合,导致活性离子的增益光谱更宽,可用于可调谐激光器和超快激光器,但通常增益系数小且热性能差,因此仅用于高功率激光。由于事实证明,圆盘激光器与具有或多或少高透明度阈值的激光材料一起工作良好,因此刚开始希望它能与其他4能级或准3能级激光材料同样好地工作。据报道,具有稀土离子(例如)和过渡金属离子(例如(蓝宝石)中的或ZnSe中的(用于中红外)的圆盘激光器通常的输出功率和效率远低于的典型值。过渡金属离子的3d电子与晶格振动(声子)强烈耦合,通常会导致非常宽但增益低,这使得作为具有非常短增益和吸收长度的盘式激光器运行成为一项挑战。仅从生产过程来看,半导体非常适合盘式激光器的几何形状, ...
这一特点,在晶格热传导过程还来不及发生时,飞秒激光已经在微纳尺度内完成去除物质或使其改性的物理过程后,扬长而去。图1.飞秒激光器外观图纸三、飞秒激光的波长当前由飞秒激光器直接输出的波长主要集中在0.8-1.5um的近红外波段,但是由它激发而产生的飞秒激光脉冲激光却覆盖了从X射线到太赫兹这一广阔领域,利用强飞秒激光和电子束相互作用的汤姆逊散射效应,可以产生相干的硬X射线,波长达0.4Å。飞秒强激光与惰性气体原子相互作用而引发的高次谐波,可获得软X波段的相干辐射,波长可覆盖十纳米至几纳米。飞秒激光在晶体中的二倍频、四倍频、六倍频效应可将近红外的飞秒激光变换至可见、紫外、极紫外和真空紫外,直至150 ...
子,大分子或晶格的宏观运动可以发生在样品特定的频率上,特别是在0.15-6太赫兹能量范围内,对应于5 - 200 cm-1拉曼位移。这里的光谱数据可以揭示大量关于局部分子间环境的细节:结晶度和非晶态物质的数量,液相的数量,蛋白质和其他聚合物的盘绕和解开,以及蛋白质的结合等。太赫兹是一种更难以产生、探测和操纵的辐射。光源复杂且效率低下,通常基于超快激光器。探测器也同样复杂。理论上,低频拉曼,即具有太赫兹位移的拉曼,可以很容易地得到相同的数据。但实际上,随着拉曼位移的减小和强度的增大滤光片的阻塞特性使信号衰减,即使是微弱的宽带放大自发辐射也使背景噪声呈急剧的非线性增加。这限制了大多数拉曼系统使用传 ...
异,通过测量晶格间距变化引起的布拉格反射角的变化来确定磁畴结构。X射线衍射法的优点是分辨率比较高,可以在观察磁畴的同时观察晶体的缺陷,从而可以研究晶体曲线与磁畴结构的关系。但该方法也存在成本高、无法检测外场作用下磁畴动态变化等缺点。(4)电子显微镜法电子显微镜主要是通过分析电子束在磁性材料表面反射或通过磁性时,磁性材料中磁畴产生的局部杂散磁场所产生的反射或散射电子束的图像来检测磁性材料的磁畴。电子显微镜根据具体的工作原理可分为多种类型。目前,磁畴观察常用电子镜显微镜、洛伦兹显微镜和扫描电子显微镜。 电子显微镜具有很高的分辨率,因此可以研究畴壁等磁畴的精细结构,可以探测到更多的磁畴信息,但对强磁 ...
时考虑电子和晶格的贡献:这就是Selmeier色散公 式,实际应用中用波长代替能量作为参量:5.EMA(有效介质)模型有效介质模型应用于两种或两种以上的不同组份合成的混合介质体系,多达 5种不同材料组成的混合材料、多晶膜、金属膜、表面粗糙的膜、多孔膜、不同材料或合金的分界面、不完全起反应的混合材(TiSi、WSi)、无定形材料和玻璃;其基本思想是将混合介质当作一种在特定的光谱范围内具有单一有效介电常量张量的“有效介质”,是把均匀薄膜的微观结构与其宏观介电常数相联系.它包含3种有效介质模型:5.1 lorentz-Lorenz有效介质模型zui简单的异构介质是介电函数分别为εa和 εb的两种介质 ...
布的测量、超晶格、粗糙表面、界面的测量。(2)物理吸附和化学吸附用椭偏术方法在现场且无损地研究过与气态、液态周围媒质相接触地表面上吸附分子或原子形态的问题。(3)界面与表面的应用椭偏广泛用于研究处于各种不同环境中的材料的表面的氧化和粗糙程度,以及材料接触界面的分析。例如金属和半导体接触,以及肖特基的研究。(4)电化学 离子吸附、阳极氧化、钝化、腐蚀及电抛光等电化学过程,可以现场深入地研究电极-电解液界面过程。(5)微电子领域在微电子领域中,研究薄膜生长过程,薄膜厚度,半导体的表面状况以及不同材料的界面情况,离子的注入损伤分布等;一些高技术材料的研究及其它新领域:高温超导材料、低维材料、导电聚合 ...
限制。例如,晶格匹配对异质结构施加了限制,因为具有非常不同晶体结构的材料在组合时不能很好地耦合。传统的半导体也倾向于形成三维结构,使得不配对的键更容易存在于表面。这些悬空键不仅使这些系统中的表面物理更加难以控制,而且使这些材料的薄膜变成准二维(2D)结构。幸运的是,在过去的二十年里,一种新的材料出现了,它具有真正的二维性质和光学定向自旋的能力。了解更多详情,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-level-150.html更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类 ...
单个铁磁点的时间分辨磁光显微镜为了实现这种激光诱导的进动,需要适当的外部磁场配置,要么直接施加,要么来自另一个磁层的交换偏置场。此外,特定的材料性质,如磁晶和形状各向异性,强烈影响进动的动力学。飞秒磁光实验除了可以获得灵敏的时间分辨率外,还需要同时提高测量的空间分辨率,以便研究单个磁点的动力学。精确的时间和空间分辨率的结合是一项重要的技术挑战。它允许探索用于存储和处理信息的磁性介质中的磁性位元的基本特性和zui终性能。为了实现这些目标,人们开发了一种新的实验装置,该装置基于飞秒时间分辨磁光克尔效应,具有衍射有限的空间分辨率。研究了具有垂直各向异性的CoPt3磁点的磁化动力学。仪器使人们能够在共 ...
或 投递简历至: hr@auniontech.com