展示全部
WLMter高精度激光波长计(190-1200nm, 可测线宽,较小范围内光谱信息)
全自动单色仪
DMc150、DTMc300、DTMS300 全自动级联单色仪
XWS-30 激光驱动白光光源LDLS(190-2500nm)
M266 自动单色仪
XWS-65激光驱动白光光源LDLS(190-2500nm)
M522 自动单色仪
255-1700nm宽带可调谐滤波器
M833 高分辨率全自动单色光谱仪(拉曼光谱)
TLS120Xe 高功率可调谐光源
EQ-99X激光驱动白光光源LDLS
都是基于光栅单色仪实现的,其中根据使用光栅种类的不同又分为普通光栅单色仪也就是机械刻划的光栅单色仪的超光谱成像系统和基于体布拉格光栅(VBG)的单色仪(LLTF)制成的超光谱成像系统这两类的超光谱具有超高的光谱分辨率,所以通道数对于这两类设备一般没有太大的意义,大家比较常见的都是比较光谱分辨率和使用波段,这两种之间又会有一些差异, 基于刻划光栅的超光谱的光谱分辨率的极限会比基于体布拉格光栅的超光谱的光谱分辨率还要高,一般而言刻划光栅的超光谱分辨率最好的情况下可以到0.02nm-0.05nm这个数量级的水平,体布拉格光栅的超光谱极限分辨率一般都在0.6-2nm这个水平,虽然在光谱分辨率极限上刻划 ...
的反射式光栅单色仪的光利用效率都会比较低,一般来说都只有50%-60%左右的水平,随着单色仪技术的发展,现在可以使用透射式光栅光谱仪(VHG),这样可以使得光利用效率大幅提高,最高效率可达到90%以上的水平。拉曼信号是非常弱的信号,所以要求采集最终信号的CCD具有较高的灵敏度和量子效率,一般会选深度制冷型CCD来提高信噪比,由于只需要光谱和强度两个信息,光谱信息由光谱仪决定,只需要不同波数上的强度信息,所以出于成本考虑都会使用线阵CCD。法国GreatEyes深度制冷宽谱CCD相机 ...
比一般的光栅单色仪具有更高的光通量所以在许多对光通量有要求的系统中有显著优势,并且可以对每个通道的光进行调制,不过声光可调谐滤波器(AOTF)也有一定的劣势,光谱分辨率不够优异,对偏转敏感等劣势。所以具体特殊应用还是需要视具体情况而定,具体器件匹配具体应用。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
镜、场透镜、单色仪和光电倍增管检测器。整个系统由一台专用的台式计算机控制。线性Stokes参数,Q和U,由2f调制频率测量,而圆形Stokes参数V,由第一个PEM的1f调制频率测量,使用锁相放大器以获得额外的精度。直流分量提供了总强度I。在我们能够产生完全线性偏振光的情况下,圆偏振光完全偏振光的偏振度为零。偏振计可从400nm调到800nm,并由软件自动控制,并可以在选定波长范围内进行离散的扫描。单色谱的光谱分辨率为15nm(FWHM),最常见的采样频率为5nm步长。实验分别测量了样品的透射和反射的圆偏振光谱。光路如图1:在反射模式下,来自光纤耦合石英钨卤灯的光通过水平开口(B)进入直径为2 ...
意的是,如果单色仪内部的温度控制出现故障,单色仪的绝对读数可能会每天变化多达 2-3 波数。2) 有机化合物--茚如果需要额外的精度(大约 0.5波数),则可以使用茚。茚也被用作红外分光光度计的频率校准器。使用前应真空蒸馏纯化并保存在密封毛细管或核磁共振管中。茚的拉曼光谱如下图所示,下表列出了推荐用于校准的频率。3) 激光等离子线氩离子激光器的主要等离子线可用于校准。为了观察这些线,应该对激光束进行失谐,并且应该从熔点管收集散射辐射。这种方法给出的校准精度优于1 波数。4) 氖发射线如果有标准的氖光源,Ne 发射线可用于在宽频率范围内获得高频校准。下图显示了使用 Ne 灯拍摄的光谱。下表列出了 ...
见方法包括:单色仪型分光光度计测试方法,干涉型光谱分析系统测量方法,偏光检测分析方法等。反射率测量的常见方法包括:单次反射光谱分析测试方法,多次反射光谱分析测试方法和激光谐振腔测试方法等。光谱测量方法中有很多因素会影响透射率和反射率精度,这些因素主要包括:D1,被测样品的口径大小。当样品小于光斑尺寸时,需要采用光阑来限制光束的大小。第二,被测样品楔形角的影响。为减小该因素的影响,可以使光束尽量准直,并且尽量采用大口径的积分球探测器。第三,光线偏振效应。尽量让样品垂直放置,并且加上偏振测试装置。第四,光谱仪的光谱分辨率。选择合适的分辨率,滤光片要求较高的分辨率。第五,空气中某些充分吸收带的影响。 ...
量影响。用双单色仪(Jobin-Yvon Ramanor U 1000)记录了两种4BrBP晶型的低频拉曼光谱,并配备了标准光子耦合检测装置。光谱是用宝石532二极管泵浦固体激光器记录的。激光器发出的光在光谱的绿色区域在532 nm。激光束功率约为75兆瓦。拉曼光谱记录在封闭毛细管中的粉末晶体上。散射配置。毛细管固定在Oxford Duplex闭路循环低温恒温器中,温度范围为330e60k,精度为±1 K。图1为室温(固体曲线)到60k(虚线曲线)冷却过程中,4BrBP三斜相的低频拉曼光谱的连续变换。在155波数和30波数随着温度的变化发生了巨大的变化。图2a为从20波数到38波数的扩展视图。 ...
需求,如扫描单色仪,并最终使紧凑的自给式拉曼光谱仪和拉曼显微镜的发展成为可能。对于像聚合物和蛋白质这样的大分子,大分子或晶格的宏观运动可以发生在样品特定的频率上,特别是在0.15-6太赫兹能量范围内,对应于5 - 200 cm-1拉曼位移。这里的光谱数据可以揭示大量关于局部分子间环境的细节:结晶度和非晶态物质的数量,液相的数量,蛋白质和其他聚合物的盘绕和解开,以及蛋白质的结合等。太赫兹是一种更难以产生、探测和操纵的辐射。光源复杂且效率低下,通常基于超快激光器。探测器也同样复杂。理论上,低频拉曼,即具有太赫兹位移的拉曼,可以很容易地得到相同的数据。但实际上,随着拉曼位移的减小和强度的增大滤光片的 ...
力学所先后将单色仪应用到椭偏成像技术中,研究出的连续波长扫描的光谱椭偏成像系统弥补了之前光谱测量的不足,实现单波长到多波长的光谱测量;可以测量材料在不同波长下的特性,获取样品上各微区的光谱椭偏信息及其分布,具有可达到原子层分析水平的纵向分辨能力、可达光学衍射极限的横向分辨能力、连续可调的光谱分辨能力以及秒量级的时间分辨能力。该系统能对具有复杂横向微结构的大面积纳米级层构样品参数的空间分布特性和光谱特性进行快速的测量和分析,还可以对表面动态过程进行实时分析,为分析复杂横向结构的大面积纳米级层构样品提供了一种有效的方法。在从单波长椭偏成像发展到多波长椭偏成像的过程中,横向分辨率也从10μm 级发展 ...
椭偏成像使用单色仪实现光谱测量,但单色仪光谱带宽较窄,阻挡大部分来自光源的能量,使入射光强度变弱,测量结果不理想。而新型技术利用宽带光源和白光干涉技术,在入射臂采用扫描干涉仪,通过扫描参考镜获得傅里叶光谱实现光谱测量,光源的光谱分布是中心波长为610nm和半峰全宽为170 nm。该技术较大地拓宽了光谱带宽,增强了光强,测量结果更加准确。椭偏仪大多采用透镜将宽带光束聚集在样品表面,然而透射式光学系统设计无法满足宽光谱的测量要求,在深紫外情况下会产生明显的色差问题。直到 2013 年,电子科技大学物理电子学院和中科院微电子所改变聚焦成像系统,研制了基于全反射聚焦光学系统的深紫外(DUV)宽带光谱椭 ...
或 投递简历至: hr@auniontech.com