电光调制器的实际用途和应用(一)基本上有两种类型的调制器:体调制器和集成光学调制器。体调制器由离散的非线性光学晶体制成,通常用于实验室工作台或光学平台。它们具有极低的插入损耗和高功率处理能力。此处不讨论的集成光调制器使用波导技术来降低所需的驱动电压,是特定于波长的。与体调制器不同,这些调制器是光纤尾纤且结构紧凑。在简要讨论了电光效应之后,本应用笔记将描述体调制器的使用和应用。电光效应线性电光效应是折射率的变化,它与外加电场的大小成正比。1 外加电场对折射率的影响,可以通过任意偏振的光束观察到晶体中的方向,由三阶张量描述。忽略物理量的矢量性质,外部电场对晶体折射率的影响具有以下形式其中 是折射 ...
纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成 ...
电光调制器的实际用途和应用(二)调幅为了理解电光幅度调制器的操作,我们首先考虑一个电光波片。 假设与晶体主轴成 45偏振的光束平行于电光晶体的第三轴传播。 在没有外加场的情况下,晶体通常是任意延迟的多阶波片。当外加电场时,电光效应会在不同程度上改变沿两个晶体方向的折射率,从而改变 有效波片的延迟。如图 2 所示,一个简单的幅度调制器的几何结构由一个偏振器、一个用于零延迟的电光晶体切割和一个分析器组成。输入偏振器保证光束与晶体主轴成 45° 偏振。晶体充当可变波片,随着施加电压的增加,将出射偏振从线偏振(从输入旋转 0°)变为圆偏振、线偏振(旋转 90°)、圆形等。分析仪仅透射已旋转的出射偏振分 ...
电光调制器的实际用途和应用(三)宽带调制器调制器设计用于在从直流到大约 100 MHz 的宽带宽内调制线性偏振光的幅度或相位,驱动电压相对较低。在这个频率范围内这些器件的电输入阻抗主要由电光晶体的电容决定。该电容范围从 4104 型调幅器的 10 pF 到 4002 和 4004 型相位调制器的 30 pF。信号发生器和频率合成器通常具有 50Ω 的输出阻抗,并且未针对驱动容性负载进行优化。然而,由于 30 pF 是一个相当小的电容,因此大多数信号发生器在低频 (<10 MHz) 和小信号电平下都是足够的驱动器。为驱动容性负载而优化的高压放大器也可用于有效驱动调制器。在高频下,传输调制信 ...
;EOM:电光调制器;M1:反射镜;L1、L2、L3、L4、L5、L6、L7、L8、L9:透镜;scanner:振镜共振扫描仪;DM:长通二向色镜,用于将荧光信号(绿色路径)与激发光(红色路径)分开;BS:1:9(反射率:透射率)非偏振分束镜;PMT1、PMT2:光电倍增管。荧光信号分为低信噪比 (~10%) 分量和高信噪比 (~90%) 分量,并由两个 PMT 同步检测。视频1:DeepCAD 在单神经元记录上的去噪性能。视频上部为神经元的同步电生理记录,反映了真实的神经活动。检测到的尖峰用黑点标记。原始噪声数据和 DeepCAD 增强数据分别显示在视频中部和下部。视频2:从左到右分别是大型 ...
元件,如空间光调制器(SLM)预先编码光纤近端的光场,以在光纤远端获得想要的光场分布。这可以在光纤远端面产生聚焦和其它更复杂的光场模式。OTF与光纤的弯曲、波长漂移、温度变化强相关,这意味着需要实时原位校准。但实际上校准很复杂,很难实现实时。相比之下,CFB在分离的纤芯中引导不同的模式。当芯间串扰可以忽略的时候,没有模式混合产生。然而,随机相位变化在邻近纤芯之间发生。这可以使用SLM通过数字光学相位共轭(digital optical phase conjugation, DOPC)来校准。CFB可以看作是一个短的相位物体,它具有很强的记忆效应,这意味着输入耦合波前的变化会直接转化为输出耦合的 ...
过使用如空间光调制器(SLM)或数字微镜设备(DMD)这样的数字设备,CGH也能展示出动态全息显示的能力。然而,使用SLM或DMD的CGH长期存在着小视场、孪生像、多级衍射的问题。随着纳米加工技术的巨大发展,超材料和超表面引领全息图研究以及其它研究领域进入了工程光学2.0时代。超材料由亚波长级的人造结构(artificial structure)组成,它具有新颖的功能,超出了bulk material的局限性。三维超材料的加工非常困难,因此,超表面作为光学器件在可见光区扮演着重要的角色。超表面是一种二维超材料,由亚波长纳米结构组成,具有调制光的幅度、相位和偏振的能力。超表面的研究可以归为两类: ...
对应一个空间光调制器(SLM)上的特定图案。SLM序列显示不同的图案,实现在距多模光纤出光口15um的平面上进行聚焦点扫描(模拟激光扫描显微镜)。成像时,移除校准单元,二向色镜将后向散射回光纤的二次谐波生成信号反射进入光电倍增管进行成像。实验证明:(1)小鼠尾腱上两个区域Ⅰ和Ⅱ的线偏振二次谐波生成成像结果。(a)图从上到下分别是所有偏振角的强度和,成像平面内原纤维的方向箭袋图(quiver plot,以箭头形式表示矢量线的二维矢量图。从箭袋图中可以清楚地看到尾腱中胶原的强烈排列)参数图和 参数图(分别表示原纤维的组织成分和平面外倾斜)。(b)为区域Ⅰ的调制深度图和整个视场内的平均信号强度图(c ...
SLM(空间光调制器)上生成Em_on-Em_off的共轭场,用回放光束照射SLM,即可生成一束时间反转的光束,这束光在超声的聚焦位置处会聚。DOI:https://doi.org/10.1038/s41377-021-00605-7更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站w ...
S是一种空间光调制器。它利用液晶的电控双折射现象,在驱动电压下折射率连续变化,实现对入射光的相位调制。但由于液晶的一些特性,驱动电压改变量和相位改变量是非线性关系,实际使用中需要测量并确定相位调制特性曲线。现介绍一种相位分析方法——白光干涉法,来确定LCOS芯片的相位调制特性曲线。白光干涉法采用迈克尔孙干涉仪的结构,在参考镜前设置补偿玻璃板(同LCOS芯片前的玻璃板),消除对光路的影响,从而使参考光和反射光达成白光干涉条件。分析干涉图可得到LCOS芯片的相位轮廓,进而分析相位调制的特性曲线。上图为白光干涉法的装置示意图。白光由确定中心波长的卤钨灯发射,经毛玻璃散射。然后由线偏振片获得与LCOS ...
或 投递简历至: hr@auniontech.com