纯相位空间光调制器在点扩散函数(PSF)工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数(PSF) 工程的认识有了显着提高。Moerner 展示了PSF 工程与Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和3D 定位。PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。已证明的 ...
纯相位空间光调制器在STED超分辨与全息光镊中的应用一、引言由于普通光学显微镜会受到光学衍射极限的限制,分辨率只能达到可见光波长的一半左右,也就是200-300nm。而新型冠状病毒的直径大小是100nm左右。为了能够更精细地观测到生物样本,需要突破衍射极限的限制。进一步提升光学显微系统的分辨率。使用纯相位液晶空间光调制器(SLM)对光场进行调制,产生一个空心光束可以有办法提升系统的横向分辨率。不同于电子显微镜、近场光学显微镜的方法,这种远场光学显微技术能够满足生物活体样品的观测需要。同样原理,高分辨率的液晶空间光调制器通过精细的相位调制可以产生多光阱,从而对微粒实时操控,由此发展了全息光镊技术 ...
法是通过空间光调制器的液晶面控制反射光的相位分布,通过计算机向空间光调制器输入一个螺旋相位分布的全息图,形成具有螺旋相位分布的全息光栅,光束经过该面反射后即可生成涡旋光束。该方法与螺旋相位板法原理非常相似,只是实现方法不同,螺旋相位板的通过透射光程变化实现,空间光调制器是通过液晶反射控制相位,但都使光束被赋予螺旋相位。全息图法也与前两种相似,只是通过全息片使光束被赋予螺旋相位产生涡旋光束。利用螺旋相位板法产生涡旋光束能够实现较高的效率转换,并且能够克服空间光调制器的缺点对高功率的激光束进行转换。但一个螺旋相位板只能产生一个固定的拓扑荷的涡旋光束,而空间光调制器则更灵活,可根据需求调整。此外,加 ...
DMD光学简介DMD应用物平面——将DMD表面的图像投影到另一个表面(或虚拟图像,例如HUD)放置在系统终止端或傅里叶平面的空间滤波或光调制(包括DMD全息数据存储的使用方法)在衍射光束中放置——波长选择/光谱学如何操控灯光DMD微镜允许+/- 12º倾斜角度,在f/2.4产生4个不重叠的光锥远心是什么意思?非远心:投影透镜入口附近的投影瞳孔一般需要偏移照明远心:投影和无限照明的瞳孔每个像素“看到”光线从相同的方向来开关状态更均匀可以更紧凑更大投影镜头需要TIR棱镜TIR棱镜TIR棱镜根据角度区分入射和出射光线所有光线小于临界角将通过;其他角度反射气隙小,以减少投影图像的散光光学转换系统为了在 ...
Xblue电光调制器、IXblue光纤及其他新型激光器等光电仪器在中国市场的销售、技术服务、市场推广服务。对于IXblue全玻璃有源光纤有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。如果您对IXblue光纤有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/details-126.html欢迎继续关注上海昊量光电的各大媒体平台我们将不定期推出各种产品介绍与技术新闻。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖 ...
基于DMD的320nm以下紫外光应用可靠性研究介绍许多大学、研究中心和终端设备制造商已经发表了多篇关于使用DMD的无掩模光刻的论文。利用DMD的生产系统已经由多家原始设备制造商推出。 通常,这些工具选择使用多个中到高分辨率DMD以实现高数据吞吐量,并在365-410nm范围内工作。典型工作条件是在DMD上的3-5W / cm2 照明,温度保持在30°C以下。 基于这些条件,制造商已经能够将DMD系统稳定运行。设备在 UV-A 范围内的 3.4W/cm2 、25°C条件下始终表现出超过 3000 小时的运行时间。生产合格的UV DMD中使用的标准UV窗口具有320-400nm的可用透射率区间。为 ...
来:这就是电光调制器(EOM)和声光调制器(AOM)。EOM——通常被称为普克尔盒,它是基于晶体的,晶体会根据外加的电信号旋转输入线偏振光的偏振面。当与晶体输出端固定的线性偏振片组合使用时,将产生对激光光束强度的调制。有许多晶体支持这种电光效应,包括BBO、KD*P和CdTe,称为普克尔效应。这些可以配置为以各种不同的操作方式;如刚才描述的强度调制器,或可变偏振旋转器。在EOM中,外加电压使入射光偏转。然后可以用偏光片通过或阻挡光束,从而调制光束的强度。AOM实际上是一种可变波束偏转装置。它利用压电换能器连接到透明材料的一侧,如各种玻璃、石英、TeO2。当以射频驱动时,压电换能器会在晶体内产生 ...
ator)电光调制器,对激光光场进行射频电光相位调制,然后将调制后的激光信号经过偏振分束棱镜(PBS)与四分之一波片(λ/4)进入光学腔,然后通过反射到达光电探测器,偏振分束棱镜(PBS)与四分之一波片(λ/4)的作用就是让腔反射光进入探测器。然后对反射光信号进行相位解调,得到反射光中的频率失谐信息,产生误差信号,然后通过低通滤波器和PID(比例积分电路)处理后,反馈到激光器的压电陶瓷或者声光调制器等其他响应器件,进行频率补偿,Z终实现将普通激光锁定在超稳光学腔上。关于PDH技术的理论细节可以在一些综述论文和学位论文中找到。为了实现PDH锁定,需要一些专用的和定制的电子仪器,包括信号发生器,混 ...
,激光经过电光调制器对激光进行一个射频电光的相位调制,经过调制后的信号,再经过一个PBS(偏振分束镜)和一个波片((λ/4)进入我们的超稳腔与超稳腔进行谐振,反射出来的光再次经过偏振分束镜和波片被反射到光电探测器中,然后对其进行相位解调后得到误差信号,误差信号通过混频器以及低通滤波器进行处理后,得到的信号反馈到激光器的压电陶瓷或其他响应部件进行补偿频率,Z终实现激光器另一路激光输出频率的稳定。PDH稳频技术的核心是通过光学超稳腔产生一个误差信号,其核心部件就是光学超稳腔,超稳腔的性能直接影响了Z终输出的激光频率的稳定性。所以光学超稳腔的选择显得尤为重要。在为您的应用选择理想的腔体设计时要考虑的 ...
DLP技术的商用应用简介由Ti公司提供的DLP 芯片,具有高可靠性和长久的使用寿命。芯片表面由像素点大小的微镜组合成阵列,每一个微镜可以控制对光“开”“关”,具有高速调制空间光的 能力,在高清图像显示方面具有优势。对于DLP 芯片,合适的LED 或 RGB LED 组合是什么?固体光源和DLP® 技术结合•无极化无3LCD那样的额外损失•可靠性大于100,000小时的寿命•无需更换灯泡降低成本•快速响应时间即时开/关,与 3LCD 不同,这两种技术(DLP技术和发光二极管)都有微秒级响应时间•色彩饱和度不错的图像质量和宽广的色域基于DLP技术的LED系统的工作原理•彩色滤光片的选择对于实现较 ...
或 投递简历至: hr@auniontech.com