展示全部
2940nm脉冲激光器(Er:YAG)
2020nm脉冲激光器(Tm:YAG)
单腔双光梳激光器—异步光采样(ASOPS) 光源
紧凑型DPSS皮秒激光器
亚纳秒激光器(1-4mJ)
1040nm高功率飞秒激光器(5-20W)
高功率532nmDPSS固体激光器(Lighthouse)
470-700nm激光泵浦白光光源
高功率亚纳秒激光器(50W)
1064nm紧凑纳秒激光器-Q2HE(<4W, 100mJ,10-100Hz)
150mJ高能量纳秒OPO激光器(调谐范围410-2500nm)
532nm高功率DPSS固体激光器(Lighthouse)-Sprout-D, up to 20W
高速光学延迟线
532nm高功率DPSS固体激光器(Lighthouse)-Sprout-G, up to 18W
525/800/1050nm三波长飞秒激光器
532nm高功率DPSS固体激光器(Lighthouse)-Sprout-H, up to 20W
的静态或激光泵浦放大引入的动态像差,从而提高稳定性、确保探测灵敏度。总之,由于光学仪器在军事、工业、医疗、通讯、测试等领域的广泛应用,而自适应光学技术在提高仪器的性能、抗干扰、稳定性等方面具有独特的作用,伴随系统集成和单元技术的不断发展改进和成熟,成本的不断下降,这门科学技术必将会在军用、民用各个行业有更广阔的发展空间,并创造出社会和经济效益。 ...
PD结合超快泵浦光源和TCSPC电路,可以用来开展单原子和单分子两类单光子源特性测试。SSPD的低时间抖动和红外敏感性使得我们能够在波长达到2微米的情况下仍能分辨更短的光致发光寿命。SSPD可以被用来发展和表征各种类型的通信波长光子对源。4.经典太空对地通信空间对地通信是通信波长低时间抖动探测器的需求的一个重要领域。SSPD可以作为1550nm地面接收器,实现一定激光功率条件下航天探测器到地面的高效数据传输。5.集成电路检测半导体工业对CMOS逻辑电路芯片故障的实用化检测和诊断技术也可以使用SSPD。在CMOS器件中,当开关发生时,饱和模式下的FETs会在导电沟道的夹断区产生一个很强的电场,这 ...
振荡。直到在泵浦激励下,工作物质的反转粒子数不断累积达到饱和。此时撤掉超声场,Q值降低,激光振荡条件迅速建立。激光出射,产生巨脉冲。饱和吸收体调Q:在谐振腔内插入可饱和吸收染料,染料吸收工作物质发出的荧光。开始时染料对光子的吸收率很高,系统Q值很低,自激振荡不能发生,工作物资的反转粒子数在泵浦激励下不断累积。当染料吸收的光子累计到一定程度后,染料会突然变得透明,此时Q值急剧减小,从而实现激光振荡。调Q激光器已经被广泛的应用在医疗,工业和科研领域,其他提高激光器峰值功率的方法还有锁模技术,啁啾放大技术……每次新技术的使用,都使得激光器的发展迈向新的台阶。激光技术的发展必将给各类技术、工艺的实现带 ...
ZT)控制,泵浦源调制带宽>100 kHz。激光器输出光束被分成两路,一路与1550nm赫兹量级线宽连续激光器拍频,得到激光器某一个梳齿的相位噪声信息;另一路用于载波包络相位零频探测,首先通过一个色散补偿光纤(PM-DCF),然后通过两级功率放大和光栅对压缩脉冲,产生脉宽260fs、平均功率3.3W激光脉冲。随后脉冲被送入约30cm长ND-HNLF,根据FROG测量结果,其脉冲宽度小于70fs,平均功率1.8 W,峰值功率约为13kW。然后连接~ 30厘米长HNLF产生倍频程频谱,波长覆盖从970~2200nm。用PPLN晶体对2000nm波段进行倍频后与1000nm基频光一同输入共线f ...
,因此在这种泵浦探测波长下,无法从ReS2到WS2传输光生载流子.所以从WS2到ReS2的光生载流子的时间动力学可直接评估WS2&ReS2异质结构的质量.如上图的插图所示,蓝色曲线的归一化荧光寿命信号明显比WS2区域(红色曲线)的衰减更快.根据能带排列,WS2-ReS2界面形成II型半导体,其中WS2中激发的电子将转移到ReS2.在这种情况下,由于层间转移提供了额外的载流子复合通道,因此有望缩短载流子的寿命.使用双指数函数,WS2区域的拟合寿命为20和288 ps,而界面区域的拟合寿命为11和67ps.因此,荧光寿命结果有力地证明了光生载流子可以在异质结的界面处有效分离.光电流光电流和 ...
振变化,还有泵浦功率浮动。这些会让激光产生额外的不稳定态,例如调Q激发。为了揭示真正的孤子建立过程,必须尽可能地抑制环境扰动。然而目前无法完全抑制扰动。因此在文章中将会围绕孤子分子展开讨论,而不是孤子本身。在实验中,使用了多种方法抑制环境扰动,比如碳纳米管偏振强度饱和吸收体(Carbon NanoTube Saturable Absorber, CNT-SA)、偏振控制器、波分复用器、tap耦合器、隔离器等,并因此得以观察到两种锁模激光中的孤子产生过程。实验光路结构如下:实验分析就不在此赘述,详细分析请参考原文。以下为测量结果:锁模激光中孤子建立过程的实时记录:带有节拍稳定动态(beating ...
其最大地吸收泵浦及信号能量,以产生最佳的放大效果;纤芯外是外径为125 um的包层;最外层是外径为250 um的保护层,其折射率略大于包层折射率,因而可将从包层中辐射出的光转移。图1.掺铒光纤放大器基本原理光纤通信系统中的光纤放大器之所以大部分采用掺铒光纤放大器,是因为铒元素能在1530-1625 nm范围内提供有用的增益,且石英光纤在这一波长范围内具有最低的衰减。掺铒光纤产生受激辐射。当用一高功率的泵浦光 λ 注入掺铒光纤时,将铒离子从低能级的基态E1激发到高能级E3上。Er3+在高能级上的寿命很短,很快即以无辐射跃迁的形式衰减到亚稳态能级E2 上。由于Er3+ 在能级E2 上寿命较长,在其 ...
4脉冲激光器泵浦光子晶体光纤而产生得一种宽波段输出得激光器,不需要调谐,同时输出紫外到近红外波段全谱覆盖一般覆盖400nm-2400nm,宽谱输出但单波段功率非常低一般在毫瓦量级Dye laser(染料激光器)多种波长,可调谐基于脉冲激光器泵浦染料物质实现波长得改变或者调谐,波长跟染料物质相关,覆盖波长紫外到红外,常见得有氮分子染料激光器等,但现在一般很少使用染料激光器OPO(光学参量振荡器)多种波长,可调谐基于光学混频效应产生的一种很宽波段的激光器,可以覆盖紫外到中红外波段Ti:Sapphire laser(钛宝石激光器)650-1100nm可调谐,800nm基于钛蓝宝石(三氧化二铝掺杂三价 ...
光束(ωp,泵浦,ωs斯托克斯)的波长不同,使用短通滤波器很容易将信号从入射光中分离出来。到达检测器的光子总量很小,因此使用更灵敏的光子检测器(例如光电倍增管(PMT))进行检测。但是,CARS受其他非共振非线性光学效应所产生的背景的影响。 这些影响不仅限制了CARS测量的实际检测极限,而且使光谱失真(与分子振动共振相比)。 另一方面,SRS信号不受大多数其他非线性光学效应的干扰。 但是,SRS是受激发射过程。 信号以入射光相同的波长发生。 SRS效应仅略微增加/减少了斯托克斯束和泵浦束的光子数量。 这些变化很小,以至于无法通过常规的时域测量方法进行测量。 因此,SRS需要具有锁相检测功能的光 ...
的几何结构与泵浦激光脉冲持续时间共同影响着光电导天线(光电导开关)的性能。半导体基底须具有高载流子迁移速率、极短的载流子寿命以及高击穿阈值。使用不同的波段激发往往需要不同的基底,常用的半导体基底材料有低温生长的砷化镓(LT-GaAs)、蓝宝石(RD-SOS)等。光学整流法在线性材料中,双光束传输时相互不干扰,可独立传播,且其振荡频率均不变。当它们在非线性材料中传输时,两束入射光会混合并发生和频振荡、差频振荡现象,所以出射光中不光有原频率的光,还会包含有其他频率成分的光波。而当具有高能量的单色光束在非线性介质中传播时,它会在非线性材料中发生差频从而产生一个不变的电极化场,这个电极化场会在材料内部 ...
或 投递简历至: hr@auniontech.com