有相同波长的泵浦光子通过一个非线性过程结合,产生波长为λ/2的第三个光子。与SHG类似,和频(SFG)是结合波长为λp和λs的两个输入光子来产生一个波长为λSFG 的输出光子。λSHG=(1/λp+1/λs)-1。差频(DFG)中,两个波长为λp和λs的光子入射到晶体,频率较低的波长为信号光子λs激发泵浦光子λp,发射一个波长为λs的信号光子和一个波长为λi的限制光子。Λi=(1/λp-1/λs)-1。在差频过程中,两个信号光子和一个闲置光子出射,产生放大的信号光场。这被称为光参量放大。将非线性晶体放入一个光学谐振腔内可明显地提高效率,这就是光学参量振荡器(OPO)。相位匹配是指在两个或更多频 ...
通常需要使用泵浦和特定的工作物质。泵浦是一种使用光将原子从基态升高到激发态(通常是亚稳态)的过程。泵浦的光源应当满足两个基本条件:1.有很高的发光功率2.作为泵浦源的辐射光的光谱特性应与激光工作物质的吸收光谱相匹配。以红宝石激光器为例,其激励光源是螺旋形脉冲氙灯,工作物质是红宝石棒。氙灯在绿色和蓝色光谱段有较强光输出,正好能与红宝石的吸收光谱对应起来,最终使红宝石棒产生大量激发态(亚稳态)的原子,实现粒子数反转。而作为工作物质的红宝石则需要制作成圆柱形棒状体,两个端面平行并镀银,使之一端成为100%的全反射面,另一端成为90%的部分反射面(可看做光学谐振腔)。大部分的激光器都是由泵浦源、工作物 ...
064nm的泵浦激光器,可以产生波长长于泵浦光的信号光和闲置光。确切的波长由两个因素决定:能量转换和相位匹配。能量转换要求一个信号光子和一个闲置光子的能量和必须等于一个泵浦光子的能量。因此可以产生的光子组合是无限多的。然而会产生的有效组合是符合铌酸锂极化周期产生准相位匹配条件的组合。因此准相位匹配的波长组合称为运行波长,这种组合是通过改变PPLN温度或利用具有不同极化周期的PPLN来改变的。Nd:YaG泵浦的基于PPLN的OPO可有效地产生波长在1.3um和5um之间的可调光,甚至可产生更长波长的光,但效率较低。用脉冲或连续光泵浦,PPLN的OPO可产生几瓦的输出功率。二次谐波产生:PPLN是 ...
构的SHG,泵浦聚焦在晶体长度的中心。为了达到最佳效率,要达到Boyd-Kleinman聚焦状态。这就是光斑的大小,晶体长度与共聚焦参数的比值是2.84。SHG相互作用所能达到的最佳转换效率也取决于以下几个因素:连续波或脉冲泵源输入功率:在高功率时,可达到增益饱和泵浦/SHG波长:在低增益时,涉及更高能量光子(短波长)的相互作用,转换效率更高。1064nm→532nm对于低增益连续波,典型的转换效率为2%/Wcm。例如,对于1.5W的1064nm泵浦,40mm长的MgO:PPLN晶体,532nm的预期输出是180mW。在更高的功率下,Covesion在10W光源下可以达到1.5%/Wcm,在5 ...
此,需要使用泵浦-探测以及锁相法进行探测。光学泵浦-探测以及锁相探测泵浦-探测是多光子探测中常用的方法。这些试验通常使用两束超快激光。一束激光时刻对样品进行照射,另一束激光则通过调幅调制在一个固定的频率。因此,如何由第二束光作用与D1束光所产生的变化都会被传递到D1束光中。在检测段,将调制的光束使用空间,或者滤波片的方法阻挡。只有本身未调制的光能到达探测器。因为信号本身只发生在调制频率,因此,只要使用锁相放大器对调制频率进行检测,就能检测出两束光互相作用所产生的信号。锁相放大器使用混频原理,可将输入的电子信号与本地振荡信号混频,并通过低通滤波器滤除并放大。在频谱中,只有十分接近本地振荡器频率的 ...
简介DMD对泵浦光空间调制形成纹样,投射到硅片上,共同组成光调制系统。不同纹样区域硅片对太赫兹光的透射率不同。接收器件探测经过样品产生的全息图信息。由于DMD高速成像的特点,光调制系统可在短时间调制多组太赫兹光,足够的全息图信息用于重建样品空间模样,大大缩短全息重建耗时。太赫兹成像方案光调制部分:这部分由高电阻硅片和DMD器件组成高速光调制器。硅片曝光区域产生载流子,局部改变硅片的复介电常数,形成高导电区域,降低太赫兹透射率。DMD微镜阵列控制硅片曝光区域图样,形成不同太赫兹透射率区域。DMD高速变换图样,整个光调制器可对光束进行动态编码。接收器部分:应用单像素成像技术,依据关联测量原理,收集 ...
2))的双频泵浦激光器在单个波导内产生窄线宽太赫兹辐射。除了提供丰富的美丽的物理研究,这种技术允许紧凑,室温操作在广泛的光谱范围。我们的团队利用的QCL技术,在以下四个方面取得了稳步的进展:稳定的太赫兹频率发射;太赫兹高权力;连续波操作;和宽频率的可行性[39]。在典型的Fabry-Pérot (FP)多模腔中,光强在不同的中红外频率之间扩散,总功率是许多小Wi分量的总和。因此,产品WiWj将是小的,而太赫兹光谱将相当宽(Δv ~0.5-1 THz)。为了对太赫兹光谱进行提纯和调谐,需要将所有的中红外功率集中在两个单模工作的中红外频率上,并且它们的频率位置需要可控和可调。达到这一目的直接的方法 ...
用高功率光纤泵浦激光器在 MgO:PPLN 中产生和频,可以轻松实现瓦级功率的冷却激光器。MSFG626可用于冷却铍离子,两个泵浦激光器分别为1051nm和1550nm,然后在MSFG626中结合,产生626nm。使用BBO晶体,这种输出可以在313nm处增加一倍频率至9Be+离子跃迁。类似地,我们的MSHG637已经被用来演示铯原子从1560nm和1077nm冷却到637nm,然后频率加倍到原子跃迁。我们的MSFG 和频晶体系列如下所示。为了实现高效的和频,理想情况下,您希望两束泵浦光束共焦聚焦到 PPLN(即晶体长度与共焦参数的比率为 1),并且两束光束的功率大致相等。请注意,对于高功率光 ...
色实线,也称泵浦光)和一束弱光(黑色虚线,也称探测光)沿同一直线相反方向穿过原子气池(为了演示清楚,图中分开了一个角度),这两束光频率相同。当原子池中原子同时受到相向传播的两列光作用时,对于频率 (基态原子某一超精细跃迁共振频率)的泵浦光,可以将具有同样速度的基态原子几乎全部都激发到激发态上(或其他基态上),使吸收达到饱和。这时对于探测光,没有对于的原子来共振吸收,预期的吸收不存在,弱光束可以几乎无损的通过原子蒸气。只有速度为或者方向与光束垂直的原子即对光没有多普勒效应的原子会同时和两束光共振,引发饱和吸收现象。通过光电探测器接收后,呈现在示波器上的功率曲线则为吸收峰的状态。铷原子D1线的饱和 ...
而532固态泵浦激光器的工作过程一般如下:1.808nm半导体激光器作为泵浦光源。2.808nm入射Nd YAG晶体,产生1064nm基频光。3.1064nm基频光经过倍频晶体,经过非线性效应倍频之后,波长减半,频率加倍,产生532nm绿光。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532,我们将竭诚为您服务。 ...
或 投递简历至: hr@auniontech.com