使用两个同步脉冲激光器,即泵浦和斯托克斯(图 1)相干地激发分子的振动。当入射到样品上的两束激光的频率差与目标分子的振动频率相匹配时,就会发生 SRS 过程。振动激发的结果是泵浦光束将失去光子,而斯托克斯光束将获得光子。当检测到泵浦光束的损失时,这称为受激拉曼损失 (SRL) 检测。强度损失 ΔIₚ/Iₚ 通常约为 10 -7 -10 -4,远小于典型的激光强度波动。为了克服这一挑战,需要一种高频调制和相敏检测方案来从嘈杂的背景中提取 SRS 信号[19]。在 SRL 检测方案中,斯托克斯光束以固定频率调制,由此产生的调制传输到泵浦光束由 LIA 检测。图 1:受激拉曼损耗检测方案。检测到由于 ...
一种使用超快脉冲激光器的非接触式热导测量技术。由一束泵浦脉冲激光聚焦照射至样品表面,样品对其吸收会导致样品表面的温度偏移。而探测光脉冲相对于泵浦脉冲具有固定的延迟时间,而且该延迟时间是由机械平移台控制,通过改变光程来控制泵浦脉冲和探测脉冲间的延迟时间,由于热反射效应导致照射至其上的探测光脉冲受温度偏移的影响(如图2中所示),其中包含样品的热物性信息。图2:横轴为时间轴其中(a)经过调制器调整后的泵浦脉冲;(b)为样品收到泵浦影响的表面温度变化;(c)探测光脉冲,与泵浦光脉冲之间有一延迟;(d)由样品反射的探测光的信号[2]此外针对于测量面内热导率的空间域热反射率(SDTR)可以测量1到2000 ...
和斯托克斯短脉冲激光器照射。在SRS中,这些激光经过调谐,使它们能量差与目标分子特定振动跃迁的能量重合,在高于基态的能级上诱导特定相干振动。这些振动分子被第三个“探测”激光探测,通常与泵浦激光频率相同,使它们回到基态并产生频率高于探测激光的反斯托克斯信号(图1)。通过固定泵浦激光的波长和改变斯托克斯光束的频率,可以获得像SRS中那样的宽带测量。CARS实现了信号强度的1000倍提高,并且由于散射光是蓝移的,因此它不受自荧光的干扰。与SRS一样,信号强度的增加允许更短的采集时间,允许高达20 fps的视频速率成像。与SRS不同,CARS信号与浓度呈非线性相关,因此定量成像并不简单。第三种信号增强 ...
使用两个同步脉冲激光器, 即泵浦和斯托克斯(图1), 以相干地激发分子的振动。为了从嘈杂的背景中捕捉到非常小的SRS信号, 高频调制和相敏检测方法是必要的。图1:检测到由于SRS导致的Stokes到泵浦光束的振幅调制转移。所展示的泵浦光束的重复率为80MHz,Stokes光束具有相同的80MHz重复率,但也在20MHz处调制。通过这个检测方案,Δpump被提取出来。为了进行实时双色SRS成像实验, 研究人员必须运用正交调制并检测同相和正交信号分量。“在大多数SRS光谱实验中, 由于激光器总带宽的限制, 光谱范围被限制在300 cm-1左右,”华盛顿大学化学助理教授Dan Fu博士说到。“避免这 ...
种特殊的超短脉冲激光器,类似于光的尺子,可将无线电和微波频率与光波频率连接起来。目前已经在光钟计时、天文学和宇宙学、精确测量、气体分析、医学诊断等方面有众多应用。在未来的时间里,科学家和他们的合作者也将继续探索各类光频梳的巨大潜力。正文光频梳是一种特殊的超短脉冲激光器,其类似于光的尺子,能够快速而准确地测量光的频率。这样一种获得诺贝尔奖的设备填补了一个重要的技术空白——科学家能够像处理无线电波一样测量和控制光波。借助光频梳,科学家们可以将无线电和微波频率与频率高10,000倍的光波无缝连接。据此,光频梳也产生了众多应用方向。计时光频梳对原子钟和时间测量产生了革命性的影响。光学原子钟通过计数原子 ...
示波器“使用脉冲激光器的主要优点是,通过同步控制脉冲重叠,在全VIS-NIR范围内获得条纹的zui佳可见度,分辨率低于1nm。”除了脉冲重叠的优点外,使用SCT1000脉冲超连续源进行干涉测量还有更多的好处。zui直接的是光谱宽度。使用LED需要一个漫长而繁琐的过程,因为每次更换光源时系统都必须重新调整。此外,有些波段是完全无法进入的。这意味着沿不完整波段重建曲线时精度较低。不仅刷的光谱更宽,而且点密度也更高。这一事实体现了使用脉冲SCT1000源的第二个主要好处:它的高功率稳定性。高稳定性提高了对干扰的分辨能力,并允许测量的高密度。作为结论,报告展示了一种干涉测量方法,使用固定重复率的单皮秒 ...
TR所需要的脉冲激光器相比SDTR采用的是连续激光测量,且内部系统较TDTR更稳定,极大降低了硬件及维护成本,且SDTR可极为方便地测量样品面内的各向异性热导率或热扩散率,但SDTR需要选择合适的激光波长和金属温度传感层,以保证获得较高的热反射系数和测量准确性[2]。面内热导率测试系统 AU-TRSD103 基于“泵浦-探测”原理,结合了频域热反射、空间域热反射、稳态温升法、方脉冲热源法的优点,具有强大的热物性综合测试能力,能够测量从薄膜到块体材料的热导率、比热容和界面热阻。系统自动化程度高,操作简便,特别利于大批量快速测量。如果您对面内热导率测试系统 AU-TRSD103感兴趣,想了解更多信 ...
光纤耦合皮秒脉冲激光器模块、SPAD单光子探测器与荧光寿命成像FLIM软件,并在您需要时提供恒比鉴相器模块。图4 FLIM LABS的荧光寿命成像FLIM入门套件FLIM数据采集卡TDC:我们的紧凑型USB 供电数据采集卡专为荧光寿命成像和光谱测量而设计。其基于FPGA的可定制技术,尺寸101x139x28mm,重量轻(仅120克),总计26个I/O通道可分辨荧光寿命50ps,死区时间1.5 ns,计时精度(σ/√2)300ps,24 或 48 ps 时间 bin 分辨率,并能通过USB3.0与PC软件直接连接,无需额外供电。光纤耦合皮秒脉冲激光器模块:我们的激光器模块可用波长有405、445 ...
高重复率p的脉冲激光器。为了进行这种表征,我们使用了皮秒p FYLA SCT 超连续激光器,其输出450 - 2300nm,重复频率为40MHz。我们将FYLA SCT与AOTF耦合以选择我们需要的不同波长,并使用不同的清理滤波器进一步对其进行光谱过滤,因为具有清晰的谱线对于单分子实验非常重要。然后将FYLA SCT光纤激光器直接输入到自制的共聚焦荧光显微镜的激发臂中。光子纳米系统图像组的设置。光纤耦合的FYLA将SCT白色激光引导到自制光学共聚焦显微镜的激发路径上。另外两条激光线已经出现在设置中。该装置被用于不同的项目,因此它有几个光学组件,以允许更大的灵活性。FYLA SCT是一种1W脉冲 ...
荧光寿命成像技术在微塑料识别中的应用微塑料问题已成为全qiu关注的环境问题,其在多种生态系统中的累积导致了对野生生物及人类健康的潜在风险。荧光寿命成像(FLIM)技术作为一种先jin的识别手段,在微塑料研究领域显示出巨大的应用潜力。随着塑料使用量的持续增长,微塑料的环境污染问题日益严重。传统的微塑料检测方法往往耗时且效率不高。FLIM技术提供了一种高效的解决方案,能够通过分析微塑料的荧光寿命来快速识别和分类这些污染物。FLIM技术的核心在于使用荧光寿命作为区分不同物质的依据。荧光寿命是指材料被激光激发后,发出荧光持续的时间。在FLIM设备中,一个特定波长的激光被用来激发微塑料样本。样本吸收激光 ...
或 投递简历至: hr@auniontech.com