感的表面增强拉曼散射引言:纳米多孔金属zui近引起了人们对催化、储能、表面增强拉曼散射(SERS)和传感等广泛应用的极大兴趣,由于其独特的表面结构(丰富的纳米间隙和纳米尖端)、大比表面积和高导电性。脱合金是制造纳米多孔材料的常见方法,其中合金中的反应性成分被选择性溶解,留下由剩余的更贵重的成分组成的双连续多孔结构。早期,脱合金主要集中在贵金属上,如Au、Pt、Pd和Ag。随着合金前驱体制备工艺的改进以及液态金属脱合金和气相脱合金的发展,金属体系的脱合金已从贵金属扩展到各种过渡金属,包括Ni、Co和Cu。然而,脱合金的一个不可避免的问题是合金前驱体的制备工艺相对复杂。它包括对非贵重元素和贵重元素 ...
在相对较弱的拉曼散射下,并且可以模糊整个拉曼光谱,使材料的识别或量化成为不可能。解决这一问题的有效方法是时间门控(TG),这是信号处理中常用的一种技术。热重光谱的目的是测量特定时间段内的信号,从而实现对瞬态过程的监测。早在20世纪70年代,随着科学家们在测量过程中寻找去除荧光背景信号的方法,TG就进入了RS领域。然而,TG拉曼直到zui近几年才开始商业化。为了扩大RS的普遍适用性,克服荧光限制是很重要的。RS基于从激发波长位移的光子的非弹性散射,称为Stokes和AntiStokes位移。它用于提供给定样品中受激分子的信息。与红外光谱(IR)类似,该信息可用于研究材料在不同聚集状态(固体、液体 ...
n)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。由分子振动、固体中光学声子等激发与激光相互作用产生的非弹性散射称为拉曼散射。拉曼光谱成像技术是拉曼光谱分析技术将共聚焦显微技术、激光拉曼光谱技术及新型信号探测装置完美结合,把简单的单点分析方式拓展到对一定范围内样品进行综合分析,利用获得的不同成分特征拉曼频率的强度变化,构建出该种成分在样品上的空间分布图,并用图像的方式显示样品的化学成分分布、表面物理化学性质等更多信息。拉曼图形能够揭示样品中主要有哪些化学成分及各成分的空间位置分布显示出样品中颗粒的尺寸和数目,还可以体 ...
或 投递简历至: hr@auniontech.com