折射式望远镜物镜一般说,望远镜物镜的视场较小,例如大地测量仪器中的望远镜,视场仅 1~2度;天文望远镜的视场则是以分计的;而一般低倍率的观察用望远镜,视场也只在10 度以下。但物镜的焦距和相对孔径相对较大,这是为保证分辨率和主观亮度所必需的,可认为是长焦距、小视场中等孔径系统。因此,望远镜物镜只需对轴上点校正色差、球差和对近轴点校正彗差,轴外像差可不予考虑,其结构相对比较简单,一般有折射式望远镜物镜、反射式望远镜物镜、折反射式望远镜物镜,这篇文章主要介绍折射式望远镜物镜。这类物镜要达到上述像质要求并无困难,但要求高质量时,要同时校正二级光谱和色球差就相当不易。后者常只能以不同程度地减小相对孔径 ...
反射式与折反射式望远镜物镜一般说,望远镜物镜的视场较小,例如大地测量仪器中的望远镜,视场仅 1~2度;天文望远镜的视场则是以分计的;而一般低倍率的观察用望远镜,视场也只在10 度以下。但物镜的焦距和相对孔径相对较大,这是为保证分辨率和主观亮度所必需的,可认为是长焦距、小视场中等孔径系统。因此,望远镜物镜只需对轴上点校正色差、球差和对近轴点校正彗差,轴外像差可不予考虑,其结构相对比较简单,一般有折射式望远镜物镜、反射式望远镜物镜、折反射式望远镜物镜,这篇文章主要介绍反射式与折反射式望远镜物镜。一、反射式望远镜物镜反射式物镜主要用于天文望远镜中,因天文望远镜需要很大的口径,而大口径的折射物镜无论在 ...
差系统,例如望远镜和显微镜,可利用瑞利判断和斯特里尔比判断来评价其成像质量,入里判断由于计算方便,为大家广泛采用。3,分辨率(瑞利判据)由于衍射每一个点光源经过成像系统之后,都会形成一个主光斑及其外的一系列微弱的衍射环。 当两个物点过于靠近,其艾里斑就会重叠在一起。当两个物点继续靠近,以至于经过系统成像之后的两个像点中心距离等于艾里斑的半径的时候,通常就认为刚好能分辨出是两个像,此时两个光强j大值与中间j小值之比为1:0.735,与光能接收器(眼睛或照相底板)能分辨的亮度差别相当。两个物点继续靠近,这个成像系统就分辨不出这是两个点了。所以瑞利判据,就是成像系统的分辨率基本依据。简单点讲:一个光 ...
3.6 m的望远镜商,其中使用的变形镜有19个单元。在自由空间光通信系统中,为了解决大气湍流引起的波前畸变,人们提出使用自适应光学系统实现畸变波前的波长。涡旋光和球面电磁波示意图对于涡旋光束在大气湍流中传输产生的波前畸变,可通过自适应广西系统进行校正和补偿。传统自适应光学技术是一种电子学和光学相结合的技术,能够实时探测畸变波前并予以实时校正,使光学系统具有适应自身和外界条件变化的能量,从而保持较佳工作状态,提高光束的质量和改善通信系统的性能。无波前传感器的自适应光学校正大多数自适应光学系统都是用波前传感器根据探测到的畸变量产生的相应的控制信号驱动波前校正器对畸变相应进行校正。2010年,夏立军 ...
。通过简单的望远镜将SLM放置在与现有扫描仪(即振镜)共轭的平面上,现有的激光扫描系统可以很容易地修改为与衍射SLM一起工作。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。 ...
如,在组装的望远镜系统中,多个主镜或副镜通常被“蜘蛛”支撑结构部分覆盖。除了相位噪声之外,相位展开还受到这些相位岛的影响,从而导致较大的误差。虽然这些相位岛是完整相位的一部分,但包裹相位不能反映这一点。因此,当展开整个测量区域时,相位岛之间的不连续性是一个挑战。此外,它不仅可能导致相岛内部的错误,而且还可能导致其中的高度故障。此外,当需要多次平均测量时,问题变得更加严重。相位展开可能会在一次测量中向上调整特定的相位岛,但在下一次测量中可能会向下调整,当这些测量被平均时,结果是模棱两可的,无法自动或手动解决。目前采用的方法包括填充缺失区域的坡度数据以获得连续的局部坡度,这是通过计算表面图形的两个 ...
件在光程中被望远镜跟随,这是确保从DOE出现的小束也在检镜处重新连接在一起所必需的,允许每个单独的小束保持准直,并微调-小束传播的角度。当使用偶数量的波束时,我们通过机械阻塞消除了零级波束。虽然从DOE发射出的每个小束都与射入DOE上的激光束的直径相同,但随后的望远镜产生了一个副作用,即每个小束的大小与望远镜的功率成正比。因此,我们用另一台望远镜预先缩小或预先扩大入射激光。由于我们的系统已经在光路的早期使用了望远镜,使光束通过针孔(一个空间滤波器,确保光束截面轮廓的圆度;图1B,元素3),我们利用同样的望远镜,通过简单地改变该望远镜的焦距和第②个透镜的位置来预补偿光束的大小(图1A)。这确保了 ...
只适用于评价望远镜和显微镜物镜等小像差系统。这类系统是一种视场很小而孔径较大或很大的系统,应该保证轴上点和近轴点有很好的像质。所以须校正好球差、色差和近轴彗差,使最大波像差不大于 1/4 波长,符合瑞利判断的要求。对于球差,我们若想得到容限计算式。有二种情况:1.当系统仅有初级球差时,其所产过的最大波像差(经 离焦后)由以下公式来决定。令其小于或等于 1/4 波长,即可得边光球差的容限公式为上式的严格表示应为2.当系统同时具有初级和二级球差时,在对边光校正好球差后,0.707 带的光线具有最大的剩余球差。作 的轴向离焦后,系统的最大波像差由以下公式来决定,令其小于等 手1/4波长,即可得 时的 ...
管激光器后用望远镜加宽。样品上的光强可以借助中性密度滤光轮来控制。测量时使用的探测激光功率约为10μW。激光在到达样品之前被格兰-汤普森棱镜线偏振。光从样品表面反射后,偏振面旋转克尔角θK,用沃拉斯顿棱镜将反射光分成两束正交偏振光束,用差分放大器测量相应的光强差来检测。该差分信号与克尔角成正比,因此也与砷化镓导带中的自旋极化成正比。铁磁触点的磁化以及GaAs中的自旋系综可以用两个电磁铁来操纵,这两个电磁铁位于低温恒温器外部,样品位于其中心,如图3.6所示。空气线圈磁体用于沿激光束的敏感方向(= x轴)切换喷射器触点的磁化。因此,在关闭磁场后,允许沿注入器触点的两个相应的剩余磁化方向进行自旋注入 ...
1所示,使用望远镜T (LINOS G038658000,光束扩展系统4倍)将激光束放大到一个直径5毫米,以便在样品上实现较小的聚焦光束光斑尺寸。格兰-汤姆逊偏振器P产生的s偏振光相对于样品的几何形状。分束器BS (ThorLabs BSF05-A1)用于将激光束分成参考部分和信号部分。经过镜面M的反射后,参考光束被引导到自动平衡差分检测器的参考输入端。信号束由非球面凸透镜FL1 (ThorLabs 352240-B)聚焦到样品表面S上,角度为40◦从样品法线测量。反射光束通过第二非球面凸透镜FL2 (ThorLabs 352240B)进行准直。为了提高精度和自动定位,聚焦和准直镜头安装在压电 ...
或 投递简历至: hr@auniontech.com