什么是非线性光学三倍频?三倍频顾名思义,在光学中即是将原先的光波频率变为三倍,从而产生全新频率的光波。这是一种非线性频率转换过程,可以由非线性晶体实现。 对此,通过二次谐波(SHG)产生的倍频可能更为人所知。倍频依赖于二阶非线性极化,与二阶非线性系数x(2)息息相关,产生另一个频率为原始频率两倍的新光波。因此对于三倍频来说,原则上同样可以通过三阶非线性系数x(3)直接产生三次谐波(THG),但考虑到光学材料的三阶非线性系数x(3)较小而相位匹配上也存在限制(除了在气体中),直接实现三倍频很困难。因此目前主要是通过级联产生。级联三倍频在级联的过程中,三倍频首先通过一个倍频晶体,将输入的泵浦光倍频 ...
一般地,作为非线性光学。对于中心对称介质,当反演对称性被破坏时,会产生二次谐波。Pan等人(1989)预测,在磁性表面层的情况下,二次谐波反射中会出现MO Kerr效应。被称为非线性MO - Kerr效应(NOLI-MOKE) Á的实验证据zui初是由Reif等人(1991)从铁表面观察到的。从那时起,NOLI-MOKE作为表面磁性和磁性界面的探针而受到欢迎。NOLI-MOKE的一个特别特点是,测量的非线性克尔旋转通常比相同材料的普通克尔旋转大一个数量级。然而,非线性克尔旋转的分辨率的均方根误差约为1c,远小于正常克尔旋转。后者可以测量到比0.001c更好的分辨率,这取决于测量技术。Pusta ...
。借助强烈的非线性光学效应,使得COSMO模块允许以小于200 pJ (即frep频率=1GHz时,平均功率< 200mW)的脉冲能量精确检测fceo。zui后,由于1 GHz重复频率的频率梳的fceo可以从DC变化至500 MHz,因此为激光提供快速反馈所需的电子设备并非微不足道。新的Vescent Photonics SLICE偏移锁相(SLICE-OPL)盒提供了一种直接的反馈解决方案,可在高达10 GHz的频率下反馈稳定fceo。图2 1 GHz 1550 nm简易光频梳系统搭建Menhir Photonics、Octave Photonics和VescentPhotonics的 ...
BO)晶体的非线性光学晶体来产生纠缠光子对。通过精确控制光子对的发射和接收,以及利用SPAD单光子相机高速、高灵敏的特性,zui终能够精确捕获从目标反射回来的光子。该系统使用两种技术来提高测量的准确性和抗干扰能力:1. 时间相关单光子步进偏移计数:通过记录每个单独光子的时间戳,能够以皮秒级的时间分辨率捕捉光子。这种高分辨率计时信息对于确定光子从目标反射回来的准确时间至关重要。使用SPAD单光子相机,这种相机具有单光子灵敏度和皮秒级的步进偏移时间分辨率。实验利用了时间门控技术,通过精细地移动时间窗口来捕捉光子,这有助于高精度地确定光子的飞行时间。具体到每个光子的时间戳记录,使用时间相关的单光子步 ...
马克思-伯恩非线性光学和短脉冲光谱学研究所Ashkenasi等人发现钇理氟化物(YLF)和熔石英的表面烧蚀阈值在第1次脉冲激光辐射后会发生急剧下降;日本中部大学的Qi等人发现孵化效应导致蓝宝石的烧蚀阈值与辐射在衬底表面的激光脉冲数成反比。YAG 晶体在0.25-5 μm范围内具有较高的透过率,是一种优良的紫外、红外光学材料,且具有优良的热力学性质、良好的抗温度蠕变性,以及很强的耐高温塑性变形能力。YAG的力学性能和化学稳定性接近蓝宝石晶体,并且没有蓝宝石的双折射效应。三、具体实验验证实验采用YAG晶体,中心波长1030 nm的飞秒激光器,脉宽约为400 fs,重复频率为300 kHz。利用显微 ...
性的,就属于非线性光学的范畴,光在介质中传播就产生全新的频率,并且不同频率的光波之间会产生耦合,独立传播原理和线性叠加原理将不再使用。我们可以采用极化理论进行进一步讨论,可以认为光在介质中传播时,将感应极化,所产生的极化强度作为激励源又将产生光辐射,这即是介质中传播的光波。光电场E在介质中感应产生非线性极化强度P,介质响应特性可以通过极化率张量χ表征,对于非线性光纤,该张量χ和光电场E有关,极化强度P可表示为如果入射光频率远离介质共振区或者入射光场比较弱,则产生的极化强度和光电场的关系,可以通过级数形式来表达其中χ(1)、χ(2)、χ(3)、...分别是介质的线性极化率、二阶极化率、三阶极化率 ...
子学领域内,非线性光学晶体起到了至关重要的作用。在这项研究中,量子通信依赖于量子纠缠态的生成和分发,而使用Covesion的PPLN晶体(周期极化铌酸锂晶体),通过非线性光学效应——自发参量下转换(SPDC)产生纠缠光子对,而这些光子对是实现QKD和量子网络的基础。Covesion的PPLN晶体凭借其高非线性系数和精确地极化周期,实现了高效率的光子对产生,这将提高量子通信系统的速率。采取的光纤耦合输入/输出的波导系列WGP-1540-40/WGCO-1540-40也兼顾系统的稳定性以及快速集成。了解更多PPLN晶体详情,请访问上海昊量光电的官方网页:https://www.auniontech ...
其是指在某些非线性光学晶体中,材料的折射率与外加电场成线性关系。电光调制器通常由一个电极和一个电光晶体组成。当电极上施加电压时,晶体的折射率发生改变,从而影响通过晶体的光波的相位或偏振状态。通过调节电压,可以实现对光波的快速调制。图1电光调制器原理图2.声光调制器声光调制器通过声光效应实现对光的调制。声光效应是指声波在介质中传播时,改变了介质的折射率,从而影响了通过介质的光波。声光调制器主要由一个声波换能器和一个透明介质组成。当换能器接收到射频信号时,它会在介质中产生超声波,从而引起介质折射率的周期性变化。这种变化导致光波的衍射,衍射角和衍射效率可以通过调节射频信号来控制。图2 声光调制器原理 ...
子学领域内,非线性光学晶体起到了至关重要的作用。在这项研究中,量子通信依赖于量子纠缠态的生成和分发,而使用Covesion的PPLN晶体(周期极化铌酸锂晶体),通过非线性光学效应——自发参量下转换(SPDC)产生纠缠光子对,而这些光子对是实现QKD和量子网络的基础。Covesion的PPLN晶体凭借其高非线性系数和精确地极化周期,实现了高效率的光子对产生,这将提高量子通信系统的整体速率。本文中采用WGP-1550-10光纤耦合加固型封装波导应用于SPDC,在具有出色转化效率的同时兼具易用与可靠,并可配套提供温度控制器,保证晶体在稳定的温度下工作,满足相位匹配条件以获得稳定的纠缠光子对产生。如果 ...
b/s,片上非线性光学隔离器,色散工程紧凑和高Q谐振器,可扩展量子光子学,甚至芯片上的激光驱动粒子加速器。6.未来高速度自由空间光通信的等离子调制器(Plasmonic Modulators for Future Highest-Speed Free Space Optical Communications),L. Kulmer, et al.(OFC, 2023)摘要:等离子体调制器已被评估为在53公里踹流的自由空间光链路中高达200Gbaud的运行。它们被证明能够承受空间辐射和大温度范围,使其成为空间应用的理想选择。7.片上系统光子集成电路在硅光子学和等离子体的作用(System-on-C ...
或 投递简历至: hr@auniontech.com