展示全部
mmun穿透动态散射介质的非侵入性超分辨率成像技术背景:超越衍射极限分辨率的光学成像技术推动了细胞内研究和单分子水平化学反应研究的发展。超分辨率受激发射损耗显微镜可以实现具有超高时空精度的三维成像。对于单分子检测和定位技术,如随机光学重建显微镜或光激活(photo-actived)定位显微镜,可光开关探针(photo-switchable probes)的位置定义为衍射极限点的中心位置。多次重复成像过程,每一次对不同的随机激活荧光团成像,可以实现纳米级的重建分辨率。然而,对样品透明性的要求,使得这些超分辨显微镜技术不可能用于被强散射介质(如生物组织、磨砂玻璃、粗糙墙角等)掩埋的物体。这些介质对 ...
的典型例子是动态散射效应,电场效应的例子有扭曲-向量型效应,电控双折射效应,相变效应,宾主效应以及混合场效应等。1、动态散射效应对于一定厚度的n型液晶层,当施加在液晶盒上的交变电场频率小于某一临界值,电场强度大于某一临界值时,液晶分子将产生紊乱的运动,使各处的折射率随时间发生变化,从而使入射光受到散射。这就是动态散射效应。2、扭曲-向列型效应线偏光在液晶内传播时,其偏振方向试中于液晶分子层的分子长轴方向一致。因此,当液晶前后各放置一片起偏器和相同偏振方向的检偏器,经过起偏器的偏振光在液晶中偏振方向发生旋转,再经过检偏器时光强发生改变。在液晶盒上施加适当的电场,由于电场对液晶分子的取向作用,使得 ...
率较低)等。动态散射样品(由热变化和细胞运动引起的微观运动)的光学散射特征会随时间快速变化,为有效的活体深层组织成像带来了挑战。一种可行的策略是直接测量散射样品的内部动态,利用这些动态变化来辅助成像。例如,在此类方法中,主要目标不是形成基于强度的光吸收或荧光发射图像,而是通过着眼于散射辐射的时域动态(例如,时域方差或相关)来构建快速扰动样品区域的空间映射(spatial map)。许多重要的生物现象导致光场随时间发生这种动态变化,如血流和神经元放电事件(neuronal firing events)。目前已经开发了诸如光学相干断层扫描血管造影术和激光散斑对比成像等技术手段来测量靠近组织表面的这 ...
系数以及组织动态散射特性的信息。CW-NIRS的另一个主要限制是由于仅使用少数波长进行激发,因此在测量期间不会考虑样品的所有发色团,从而降低了技术的准确性。NIRS是当今医学诊断中常用的技术。它使用在组织透明窗口内发射的光源,在此窗口内,组织的光学吸收被减弱,有利于光散射现象,增强了光在组织内的传输,从而能够探查测量不同组织(如大脑和肌肉)氧合度的主要功能。然而,在广泛使用的配置中,该技术使用连续波照明,无法提供关于吸收和散射系数以及组织动态散射特性的信息。虽然这是一项成熟的技术,但影响TD-NIRS的主要挑战是需要合适的设备来提供皮秒脉冲,具有足够的功率和快速探测器。然而,超连续谱激光器的发 ...
或 投递简历至: hr@auniontech.com