近分子的电子跃迁时,拉曼信号可以大大增强,在荧光中占主导地位。这种现象是由于拉曼光谱的光谱选择规则,导致共振拉曼光谱。一些非线性技术,如相干反斯托克斯拉曼光谱和受激拉曼光谱(SRS)也可以显著增强拉曼信号,同时最小化检测到的背景荧光的比例。7.其他抑制荧光的方法还包括偏振门控、采样光学和几何图形、光漂白等。您可以通过我们的官方网站了解更多显微拉曼光谱仪的相关产品信息,或直接来电咨询4006-888-532。 ...
原子(分子)跃迁谱线中心频率局限在某一特定的波长上 3)由于参考频率是F-P腔的共振频率,腔体的材料和环境温度会影响腔体稳定、因此采用低膨胀系数材料制成腔体,隔离外界震动以减小F-P腔的共振频率漂移。4)通过对激光进行射频调制,避开激光幅度噪声的影响,可以达到散粒噪声的极限。而PDH技术的关键在于F-P腔的设计,根据理想F-P腔的传输,大部分的入射光会被反射,只有当激光频率与谐振腔模式匹配,才能透射,使用反射系数更高的反射镜增加了F-P腔的精细度,与较低的精细度(蓝色)相比,产生了更尖锐的条纹(绿色)(图2)。因此更高精细度的F-P腔作为参考频率对于激光稳频能起到很大作用。同时对激光相位调制的 ...
以及电子能级跃迁相关的范围内。散射光沿着所有方向辐射,伴随波长的变化,其偏振方向也有变化。1. 散射光频率不发生改变的散射过程称为瑞利散射,就是Lord Rayleigh用来解释天空之所以呈现为蓝色的那种过程。2. 散射光频率(波长)发生改变的散射过程称为拉曼散射,拉曼光子的能量与入射光子能量相比可以增大,也可以变小, 取决于分子的振动态。3. 斯托克斯和反斯托克斯拉曼散射中,前者散射光子的能量较之入射光子变低(失去能量,波长红移),而它的散射强度更大一些,这是因为在室温下分子中大多数电子主要布居在振动基态(参见上图所示)4. 分子中少量电子布居在较高的振动能级上,因此散射光子的能量可以大于入 ...
要小于相应的跃迁能级的自然线宽,并且对激光器的频率稳定性要求很高,为了获得窄线宽、高功率、稳频率的冷却光,可以采用注入锁定技术。注入锁定可以很好解决满足这些需求。MOGLabs提供由种子激光器、放大器以及相应的控制器等组成的注入锁定放大系统ILA,相比于昂贵的光学倍频(SHG)系统,ILA更加紧凑和成本也更低,并且光束质量优于锥形放大器TA系统。在这里高输出功率是由一个高功率激光器产生的,称为从激光器(slave laser)或者放大器(amplifier)。并且采用一个低噪声低功率的激光器输出注入到放大器的谐振腔中,这个低功率激光器被称为主激光器(master laser)或者称为种子激光器 ...
裂引起的激子跃迁。C 与来自 d 轨道的带间跃迁有关。随着将块状 MoS2 转化为量子点时发生的维度变化,MoS2 纳米片的激子峰消失,并出现了新的吸收特征。由于量子尺寸效应,在 MoS2量子点中观察到吸收峰蓝移。此外,在 MoS2 QD 的 PL 光谱中,不存在 A 和 B 激子峰,并且在相对于原始 MoS2 的 PL 发射区域的更高能量区域中产生了新的强发射峰。 图 1c 显示了在 300 到 360 nm 的激发波长下分散在 DI 水中的 MoS2 QD 的 PL 光谱。 MoS2 QDs 中的PL 峰在激光照射过程后转移到更高能量区域。光学性质的这些变化与量子限制效应有关。您可以通过我 ...
研究材料四极跃迁的新方法的开发。OAM的产生需要合适的光学器件和足够明亮的相干光源。当前不足:通常通过将光学元件(如可编程空间光调制器、阶梯式相位板和螺旋菲涅尔波带板)插入光的传播路径中,可以轻松产生OAM光束,然而这些方法不适用于现代X射线自由电子激光器(XFEL,目前科学应应用中亮度最高的X射线源)。基于此,中国科学院上海应用物理研究所的Nanshun Huang和Haixiao Deng提出了一种不需要外部光学元件,直接从X射线自由电子激光振荡器(XFELO)生成强OAM光束的方法。创新点:(1)利用XEFLO腔的布拉格反射镜和纵横模耦合,在传统的XFELO结构中进行模式选择,从而产生自 ...
光基团从基态跃迁到激发态的能量要求时,多光子激发发生。荧光信号可以是进入生物样品的外源探针(Hpechst,AlexaFluor488等),也可以是内源分子(NAD(P)H或逆转录荧光蛋白)。(2)多光子成像对二次谐波(Second harmonic generation, SHG)生成敏感,即两个光子瞬间将它们的能量转移到一个波长减半的光子上。二次谐波生成不需要荧光基团,但要求分子结构是高度有序和特别对称的。最常见的满足二次谐波生成的生物结构是胶原。(3)多光子成像是一种非线性的过程,信号产生要求功率密度达到MW/cm2的量级。如此量级只有在显微物镜的焦平面才可以达到,因而将可以观测的信号限 ...
腔,由激发态跃迁回基态,释放能量,形成稳定的激光输出,但工作介质中的原子受到激励源激发后使处在高能级的原子数数目必须大于低能级上的原子数数目,这样增益大于损耗,才能使光的在谐振腔中不断得到增强产生较强的激光。因此合适的激光工作介质和激励源是激光器必不可少的组成部分。不同的工作物质的激发光源波段各异,如今的激光工作介质有固液气和半导体在内的几千种,并涵盖了从真空紫外到远红外的波段,按波段划分的激光器种类大致如下表:激光器波段(λ)常用工作介质远红外激光器25~1000μm自由电子激光器中红外激光器2.5~25μmCO分子气体激光器(5~6μm)近红外激光器750nm~2500nm掺钕固体激光器( ...
导电子从基态跃迁到虚拟态,第二个光子诱导跃迁到激发态。双光子吸收过程在多光子光学显微镜和多光子光学光刻中至关重要,这两种应用都已商业化多年。多光子光学光刻已成为制造从纳米级到微米级的三维(3D)结构的成熟方法。在3D光学光刻(也称为直接激光写入或 3D 激光纳米打印)中,双光子吸收导致光引发剂跃迁率的缩放,因此曝光剂量与光强度的平方成正比。至关重要的是,这种二次非线性抑制了衍射极限激光焦点不可避免的横向和轴向拖尾,从而保证了沿所有三个空间方向的激发和后续化学反应的关键浓度。重要的是,没有额外非线性的单光子吸收不能从根本上提供这种浓度来制造任意3D 结构。为了获得有效的双光子吸收,通常使用锁模皮 ...
半高宽与原子跃迁线的自然线宽相当,约MHz量级,并且原子的能级十分稳定,因此共振吸收峰能够作为理想的激光稳频基准频率。87Rb原子的超精细能级结构但是由于在室温下原子进行强烈的热运动,运动速度在一个很大的范围内分布,多普勒效应就很明显了。对于某一频率的激光,不同速度的原子“感受”的频率是不同的,这导致了激光的频率在很大范围内都会有相应的原子发生吸收,使吸收峰被展宽到原子平均速度的的多普勒移频量级,约几百MHz。并且对于距离较近的跃迁线,在这个展宽下会被合并到一起,吸收峰进一步被展宽。正是因为多普勒展宽,原子的吸收谱线宽比起外腔半导体激光器的线宽大了两到三个数量级,无法用于稳频。需要在多普勒背景 ...
或 投递简历至: hr@auniontech.com