结构:SLM是基于LCOS(Liquid Crystal On Silicon液晶覆硅)工艺开发出来的,由盖板玻璃,前透明电极,液晶层,反射镜像素,集成电路背板(CMOS工艺)等结构组成。SLM有着广泛的应用,可以用于光束转向、分束、调焦,光镊,脉冲整形,衍射光学等领域。SLM的剖面图和相位调制原理图如图一所示:图1 SLM截面图及相位调制原理盖板玻璃起到保护和封装液晶的作用,针对实际使用中光源的不同波长范围,盖板玻璃表面镀有相应波长范围的宽谱AR膜,可以大大减少反射光,提高系统效率。前透明电极层位于液晶层的顶部,加载有恒定电压。液晶层是SLM中的工作物质,液晶分子的排列状况可以在电场作用下 ...
一、简介激光引起的损伤的原因主要有两类:热吸收-产生于SLM中一种或多种材料对激光能量的吸收。这种损伤形式一般适用于连续波(CW)激光器、长脉冲(单脉冲长度≥1 ns)激光器和高重复率的激光器,这些激光器的平均功率可以非常高。介电击穿-当高峰值功率密度的激光器以超过热吸收速率的速度将电子从材料中剥离而导致烧蚀损伤时发生。这种损伤形式一般适用于具有高峰值功率的短脉冲激光器为了说明这些概念,图1-图5举例说明了随时间变化的激光功率密度曲线(红色单线)和材料温度(蓝色双线)。每条曲线显示了高脉冲功率密度如何能立即导致介质击穿,以及在整个激光脉冲周期中材料温度如何升高,从而接近热损伤点。不同的材料有不 ...
,速度不同电光调制器一般入射光入射方向都是垂直于晶体表面,晶体都是做相位延迟使用的,而且要求出射光的o光和e光方向是相同的。那么光轴的方向只有几种情况,光轴与入射光反向相同,但是这种情况下,两束光折射率相同,对光束没有调制效果。光轴垂直于入射光,如上图所示,o光和e光折射率不同,相位延迟也不同。e光振动方向是光轴与入射光方向,类似于电光调制器的快轴方向,能够被电场所调制。普通的波片光轴应该也是这种情况。我猜测电光调制器的光轴可能是第二种情况。电光调制器折射率n=n_0+a×E+b×E^2+...n_0是在没有外加电场下的晶体折射率,a和b是常数,第一个是与电场的线性光系,称为Pockels效应 ...
k的液晶空间光调制器为例,主要由两个接口,一个是虚拟串口,负责SLM于电脑之间的通信,例如查询温度,设置RGB通道,上传LUT文件等等。另一个是HDMI接口,负责图像传输,SLM本身相当于第二个显示器,使用方法完全一致。虚拟串口默认波特率是115200。不同型号的串口命令不一致,现在新出的型号为1920*1200, 因此以这一为例。串口内容含有一套帮助命令,输入字符“h”可以查看帮助菜单,注意所有命令末尾都不需要回车符号。当输入命令h后得到如下现已结果Bandicoot Menu Ver 1.0 : Enter Command after Prompt >help : type hreg ...
及可靠的空间光调制。图1:DMD单个工作单元图示1、何为无掩模光刻?无掩膜光刻即不采用光刻掩模板的光刻技术。在传统光刻过程中,需要采用光学照射掩模版的方式将图案转移到掩模版上;而在无掩模光刻中,对目标图案的转印不需要掩模版,而是通过电子束或光学的方式直接在基片上制作出所需要的图案,这种方式避免了传统方式制作掩模版效率低、分辨率低、成本高的缺点。2、何为DMD无掩模光刻?DMD无掩模光刻是光学无掩模光刻技术的一种,该技术使用数字DMD代替传统的掩模,借助于DMD对常规掩膜予以取代而展开光刻成像,借助DMD对光源展开反射式调制,把涉及的虚拟数字掩膜移至硅晶圆基片,进而进行曝光。DMD无掩模光刻系统 ...
斯束通常由声光调制器(AOM)或电光调制器(EOM)进行调制。调制频率通常在MHz范围内。这有助于减少由光热膨胀产生的背景并提高图像采集速度。在本应用笔记中,泵浦光束是由AOM在2 MHz左右调制的。为了使泵浦和斯托克斯光束在时间上保持一致,一个电动的延迟用于调整任一或两个光路驱动器的光路长度。对于具有光谱聚焦的飞秒SRS,延迟级还用于微调泵浦和斯托克斯束之间的能量差。像大多数其他非线性光学显微镜一样,光束扫描方法通常用于CARS和SRS图像采集。在物镜之前放置一对振镜或振镜扫描头。在本例中,使用了一对振镜(GVS 102,Thorlabs)。物镜/聚光镜,探测器和数据采集在扫描头后,将光束导 ...
这里主要是测试一下CPU和GPU计算的速度。CPU:I7-10700,8核16线程,主频2.9GHz,睿频4.8GHzGPU:RTX-2060,6G显存,可用显存为5G计算平台为Matlab 2019b,采用同一个GSW算法,进行不同次数的循环。因为数据前后是相关的,所以没有主动采取并行运算。但是从任务管理器中观察,Matlab有优化过程,计算中还是使用到多核。若只采用CPU计算,CPU利用率从0%变化到74%,GPU利用率几乎不变,大部分时间还是维持在0%。若采用GPU计算,CPU利用率0%变化到11%,GPU变化率为偶尔跳到2%。然后修改图像尺寸,看看数据大小对于时间的影响,循环次数保持在 ...
四、基于空间光调制器的光镊技术随着全息光学和计算机技术的发展,光镊技术也取得了重大的进步,其中具有代表性的,即基于液晶空间光调制器的全息光镊技术。通过编程控制加载于液晶空间光调制器上的全息光栅,可实现目标光场的调制与微粒的操纵。全息光镊不仅可以按照任意特定的图案同时捕获多个微粒,而且可以独立操纵其中的每一个微粒。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
范围内使用电光调制器(EOM)调制频率,然后通过物镜聚焦到样品。另外一些TDTR设置使用声光调制器(AOM),但由于AOM的上升时间长得多,调制频率通常有限。EOM调制频率作为锁定检测的参考。在通过相同的物镜聚焦到样品之前,探针光束通过机械延迟线产生时间延迟。探测束通常在延迟阶段之前扩束,以减小长距离传输导致的发散。图1. 典型TDTR系统光学装置图时域热反射系统 探测方式:反射的探测光束由快速响应光电二极管探测器收集,它将光信号转换成电信号。然后使用锁相放大器从强背景噪声中提取信号。在早期TDTR系统中,探测器和锁相放大器之间插入一个电感,电阻为50Ω。原因是泵浦光束通常由方波函数调制(例如 ...
通常会使用电光调制器(EOM)或声光调制器(AOM)进行调制。调制频率通常在兆赫兹的频段。这样可以有效的降低光热效应,提高图像采集的速度。在这个应用指南中,我们将使用AOM对泵浦光在2兆赫的频率进行调制。在光路中,一个电动延时台被用来准确的调节泵浦和斯托克斯光之间的延时。对于光谱对焦的SRS来说,这个延时台同时被用来微调两束光之间的能量差。像大多数非线性光学成像系统一样,SRS和CARS的成像大多使用的是光束扫描的方法。一堆振镜被放置在物镜前对光线进行扫描。在这个展示中,我们使用了一对Thorlabs的GVS 102振镜。物镜,聚光镜,探测器,数据采集当激光经过振镜扫描后,通过物镜在样品上形成 ...
或 投递简历至: hr@auniontech.com