辨率只能达到可见光波长的一半左右,也就是200-300nm。而新型冠状病毒的直径大小是100nm左右。为了能够更精细地观测到生物样本,需要突破衍射极限的限制。进一步提升光学显微系统的分辨率。使用纯相位液晶空间光调制器(SLM)对光场进行调制,产生一个空心光束可以有办法提升系统的横向分辨率。不同于电子显微镜、近场光学显微镜的方法,这种远场光学显微技术能够满足生物活体样品的观测需要。同样原理,高分辨率的液晶空间光调制器通过精细的相位调制可以产生多光阱,从而对微粒实时操控,由此发展了全息光镊技术。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40 ...
应用适用于可见光波长,以及对设备上允许照射多少紫外光以达到较大使用寿命有指定的限制。此外DMD上的窗口具有针对可见光波长优化的抗反射涂层,透射率在380nm以下急剧下降。开发低至340nm的高透射率新窗口开放紫外线应用市场的机会以DMD为中心进行开发。操作超过3000小时始终如常工作。采用基于DMD的UV系统的新兴行业主要以无掩模光刻为中心。通过并行使用多个高分辨率 DMD 来实现高吞吐量,从而实现降低成本和提高灵活性的目标。已经发布的无掩模系统与传统的基于掩模的光刻系统的速度相比较,具有无需检查、管理或维修光掩模的额外好处,并且能够在数小时而不是数天内将新设计转变为产品 。紫外线-C 测试 ...
波长(UV和可见光)的激光器比红外光源产生更好的拉曼信号。我们使用了一种低成本和易于获得的绿色(~ 532 nm)激光笔,二极管泵浦固态激光器(DPSS)作为激发源。内置的Nd:YAG和KTP晶体将激光二极管的主发射波长808 nm先转换为1064 nm再转换为532 nm。有利的是,该激光笔带有必要的电子驱动电路、被动散热装置和准直透镜组件,无需额外的组件。激光束直径为~ 2.5 mm,光输出功率为~ 70 mW,足以产生容易被探测到的拉曼散射光子。测量的光谱剖面显示,中心波长和半高宽分别为531.8 nm和0.78 nm。由此估计,较小可达到的拉曼光谱分辨率范围为20 ~ 28 cm−1。 ...
偏振相机介绍光经过物体表面反射后,因为物体表面的结构、材质、颜色以及光本身的入射角等物理性质的不同,其偏振方向等也将随之改变,从而使某些反射信息得到加强,某些信息被弱化,这样便可更加有效地得到相应的图像信息,对被测物加以鉴别,如物体表面纹理结构、粗糙程度、表面缺陷等等。偏振光分为完全偏振光和部分偏振光,其中完全偏振光又分为圆偏振光和线偏振光。图1中给出了无偏振的自然光与线偏振光的区别:灯泡发出的光具有任意的振动方向,因此是无偏振的,当它穿透偏振滤光片时,只有沿着某一个特定振动方向传播的光可以通过,其他振动方向的光要么被吸收,要么被反射,此时透射光成为了完全的线偏振光。当意识到偏振光的重要性,人 ...
。大多数商用可见光激光器的输出光束直径为2mm,腔内的光束束腰可以更小。因此,大多数G&H AOM的孔径为2.5 mm。这使得它们能够支持短上升时间和高调制频率。G&H还提供用于光纤耦合更小孔径的AOM,以及用于红外激光器(如CO2)更大孔径的设备,这些激光器通常有更大的光斑直径,经常可以承受更慢的上升时间。相比之下,EOM可以有更大的孔径,标准型号的直径范围包括从2.5mm至100mm甚至更大。直径越大的EOM成本越高,但孔径大小的增加对上升时间没有显著影响。使用基于KD*P的TX系列EOM,G&H甚至可以提供高达100mm的孔径。这些可以用于太瓦和拍瓦级激光器的Q开 ...
围覆盖紫外、可见光近红外、短波红外、中波红外和热红外(UV、VNIR、SWIR、MWIR、LWIR)等波段。图2FX系列高光谱,FX10(400-1000nm)/FX17(900-1700nm)/FX50(3-5um)实验室使用的小型扫描平移台LabScanner。LabScanner有一个400x200mm的样品托盘,一个相机支架,卤素照明和可选的相机高度调整。扫描平台可选配单双照明单元。通过单独的控制电缆使用Specim的LUMO扫描仪软件套件进行控制高光谱相机和推扫平移台。图3 推扫平台成像系统Specim AFX系列高光谱相机是由Specim FX系列升级推出的专业用在无人机遥感平台的 ...
发在可见和近可见光谱区域,但在其他光子能量范围内发生了频率偏移。分光学家认为波长的变化或能量的变化可以用频率来描述。您可以通过我们的官方网站了解更多拉曼光谱仪、荧光寿命、光电流的相关产品信息。https://www.auniontech.com/three-level-59.html更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发, ...
成功实现了从可见光到近红外光子的探测由此开启了SNSPD研究的先河,而后,该小组成立的俄罗斯SCONTEL公司,二十多年来一直致力于超导纳米线单光子探测器的研究,不断地在技术上取得了新的突破。https://www.auniontech.com/details-314.html超导纳米线单光子探测器的出现,促进了量子信息、光电探测、超导电子学等领域的发展,其性能不断提升并在地月光通信、量子光学实验、激光测距等方面展示出较佳的性能。SNSPD的强大一面是具有从可见光到中红外的非常宽的光谱工作范围,并且由正常状态到超导态的过渡而获得了前 所 未 有的速度。我们的探测器可以保持长时间的运行,即7×2 ...
考虑的问题与可见光光学系统相比并无实质性的差异。而后两个区域是绝大多数热能存在的区域,也是大多数红外光学系统的工作波段,此时光学设计将与可见光系统有很大的差异。对红外光学系统可以有不同的分类方式:按其工作原理来分,可分为主动式和被动式两类,前者以自带的红外光源照明目标,系统接收目标反射的红外光,后者则直接探测目标的红外辐射。按其工作方式来分,可分为扫描系统和凝视系统。下图是一种主动红外夜视系统,它由红外光源和红外成像系统组成。红外光源发射近红外,起照明目标的作用,红外成像系统的作用是接收目标反射的红外光,得到目标的像,并将其转换为人眼可以观察的像。红外成像系统主要由红外物镜、红外变像管和目镜组 ...
景的产生,与可见光激发相比,提供了减少的光损伤,也为非线性显微镜提供了良好的穿透组织的能力。Z后,由于CARS或SRS显微镜中的光激发路径通常具有相对较低的透射率(从激光输出到样品通常观察到10%-20%),因此需要瓦级平均功率。许多研究小组发表的论文报道了使用50 - 200fs脉冲宽度而不是2 - 6ps脉冲。虽然CRS过程可能由飞秒脉冲激发,但这是以降低信号水平、限制可调谐性、损失光谱选择性和增加CARS中的非共振背景为代价的。这主要有两个原因。首先,典型的拉曼光谱特征宽度约为15 cm−1。在800nm附近,这相当于约1 nm的带宽。对于任何激光器系统,激光脉冲宽度和激光光谱带宽之间的 ...
或 投递简历至: hr@auniontech.com