。这些系统在可见光(400-1000nm)、NIR(900-1620)nm或两者(400-1620nm)光谱范围内连续可调谐。这种zui先jin的平台允许对纳米材料进行深入表征,而无需任何特殊的样品制备。如果您对高光谱暗场显微镜感兴趣,请访问上海昊量光电官方网站:https://www.auniontech.com/details-1007.html相关文献:[1] Patskovsky, S., Bergeron, E., & Meunier, M. (2013). Hyperspectral darkfield microscopy of PEGylated gold nanopa ...
过同步控制全可见光-近红外范围内的脉冲重叠,获得了条纹的zui佳可见度,分辨率小于1nm。该方法极大地简化了基于多个sled作为照明源的冗长而繁琐的zui新干涉测量方法。Iceblink是一款覆盖450- 2300nm光谱范围的超连续光纤激光器,具有超过3W的平均功率和卓越的稳定性(0.5%标准偏差)。它是一种用途广泛的白光光源,在科学和工业领域有着广泛的应用,典型应用包括材料表征、VIS、NIR和IR光谱、单分子光谱和荧光激发的吸收/透射测量。如果您对400-2300nm皮秒超连续谱激光器感兴趣,请访问上海昊量光电官方网站:https://www.auniontech.com/details ...
图为了满足从可见光到近红外的多波段测试需求,测试系统采用具有连续谱的溴钨灯作为光源并配合以单色仪。光源配备的稳流电源使输出光强波动<0.14%。光源出射光经准直镜转化为平行光。起偏器和检偏器为两个Glan棱镜,能够保证测试系统从可见光到近红外都具有优xiu的消光比。两个Glan棱镜及置于其问的待测样品分别安装在可以360°自由旋转的精密转台上,转台的精度优于1′,可由计算机控制转动,并记录转动信息。选用zui大累计误差为0.18%的高精度Babinet—Soleil补偿器。补偿器安装于精密平移台上,可以保证其移入、移出光路时位置不变。接收端选用的单色仪光谱精度为±0.2nm。NCL是与单色仪配 ...
:当φ=π时可见光谱扫描曲线中,λ/2波片在相应波长处光强值为zui大或zui小,所以仅从曲线极值所在位置便可精确确定波片在该波长处延迟为π。这为精确测量λ/2波片提供了有效的办法。测量λ/2波片时将起偏器与检偏器平行放置,待测元件光轴方位角为45。,即可获得zui佳对比度。透过光强随波长变化关系为:其中,μ为双折射率,d为波片的厚度。若在一定波长带宽范围内,忽略μ随波长的变化,便可推算出波片在该带宽范围内不同波长处的延迟值:其中,为取光强zui小值时的对应波长,λ为所求延迟的波长。2.误差分析这里主要分析λ/2波片测量误差,因此主要分析各测量参量对光谱曲线中zui小值位置的影响。(1)角度取 ...
光电传感器1、光子到电子的转换由于光和电的zui小单位分别可用光子和电子表示,我们可以用这些术语描述探测过程。光子通过光电传感器转换为电子,并以电流大小输出。更准确的描述是,如当光子被半导体材料吸收时,半导体材料的电子从价带激发到导带,然后由电路读出,作为输出信号。有三种过程可从材料中激发出电子:光伏效应,光电导效应,光电发射效应。能够发生光伏效应的半导体传感器,应该由P型区和N型区组成,并且两区相互拼接形成P-N结,如图1.1所示。1.1光电二极管原理图电子吸收光子后,激发到导带上,但在价带上留下空穴,形成了电子-空穴对。电子在材料内部向着P-N结方向扩散或漂移,zui后到达N型区,这样在N ...
元件大部分在可见光范围内使用的玻璃和晶体材料同样适用于近红外区域,它们用于制造透镜、棱镜以及窗口元件。石英玻璃应用的波长范围可以达到4μm,甚至硼硅玻璃都可以应用在3μm波长范围。波长大于红外波长区域的材料会常常用到,如卤化物单晶体、氧化物晶体、玻璃、硫系玻璃和半导体材料。在光通信中,由于吸收导致OH基减少的石英玻璃纤维也经常会用到。红外光谱波长区域的使用范围更广,例如采用反射光学系统的温度测量设备,就包含一个成像装置、波长在3~5μm和8~14μm的夜视设备、半导体锗和硅 的折射透镜、消色镜头和变焦镜头等。在红外光谱范围内,会经常用到如棱镜、窗口材料和器皿等光学元件,而选择合适的材料时要考虑 ...
允许对许多在可见光和红外线下不透明的材料进行非侵入式检测和分析。应用包括检测1到5 THz范围内的光谱特征,以区分外观相似的塑料和爆炸物[16]、通过不透明包装进行质量控制监测、对油漆进行微米级精度的非侵入式层厚度测量[17]、高分辨率气体光谱学、以及作为标签自由分析生物组织的X射线技术的替代方法(因为THz辐射不会产生电离效应)[18]。这些应用通常采用太赫兹时域光谱技术(THz-TDS)来解决。在THz-TDS中,一个光脉冲列在一个发射器装置上产生一列单周期的THz脉冲,而另一个光脉冲列则被延迟,并在一个接收器装置上等效时间采样THz场[19]。过去十年中,光导式天线(PCAs)的进展使它 ...
SNOM)在可见光范围内成像。用于磁光研究的相当紧凑和振动隔离的特高压室连接到配备薄膜制备设施的特高压系统,以及用于表征薄膜结构和形态的STM和低能电子衍射(LEED)。结合极性和纵向MOKE, kerr显微镜和Sagnac-SNOM测量可以在变温度和外磁场下进行。由于在连续的MOKE, kerr显微镜和SNOM测量之间不需要样品转移,因此样品可以保持在恒定温度下,而磁畴结构可以在不同的长度尺度上进行研究(横向平均MOKE为E1 mm, kerr显微镜为bbb3mm, SNOM为亚毫米结构)。系统的示意图如图1所示。图1所有测量都可以在高达1500欧的外部磁场中进行,垂直或平行于薄膜平面,使用 ...
这些系统可在可见光(400-1000nm)、近红外(900-1620nm)或两者(400-1620nm)光谱范围内连续调谐。这一套平台能够在无需繁琐的样品准备的情况下,深入研究纳米材料的性质。一、使用TLS获得的结果在Patskovsky等人[1]的这项研究中,使用高光谱暗场成像研究了靶向CD44+阳性人类乳腺癌细胞的金等离子体纳米颗粒(AuNPs)。这套系统已成功用于在固定的细胞制备中执行CD44靶向AuNPs的三维光谱定位和光谱鉴定(见图1)。这种空间和光谱信息对于改进基于纳米等离子体的成像、疾病检测和在复杂生物环境中的治疗至关重要。图1、使用100倍物镜沿光学z轴在不同平面拍摄的暗场图像 ...
源,目前,在可见光谱中是zui高效的有色光源。商业可用的发光二极管的光谱范围包括近紫外光谱到可见光再到近红外光谱。(1) LED基础发光二极管是一种半导体器件,其发光原理是基于载流子通过p-n结的电致发光。一般来说,发光二极管工作时就是一个普通的半导体二极管:应用前导偏置产生一个流过p-n结的电流。外电场使电子-空穴对进入势垒区的节点界面,在这里发生复合。复合可以是一个自发的辐射过程,也可以是晶体材料以振荡形式将能量释放到晶格的非辐射过程(成为声子)。这个产生额外载体和随后注入载体的重新组合称为注入式电致发光。发光二极管发射的几乎都是单色非相干光。发射光子的能量和发光二极管辐射光的波长取决于半 ...
或 投递简历至: hr@auniontech.com