价带中的电子跃迁到导带,产生电子-空穴对,在内建电场的作用下,空穴和电子分别往正极,负极迁移,载流子的定向移动于是形成光电流。 ...
分子向其基态跃迁时发射所产生的激光,通常都在紫外波段。KrF Laser(氟化氪激光器)248nmXeCl Laser(氯化氙准分子激光)308nmXeF Laser(氟化氙准分子激光器)351nmHeCd Laser(氦镉激光器325nm, 441.6nm是指工作物质是气体的一种激光器,区别于准分子激光器,气体激光器是由原子能级跃迁产生的激光器,主要激励方式有电激励,光激励,气动激励等,气体激光器一般具有非常好的光束质量和相干性。N2 Laser(氮分子激光器,Nitrogen laser)337.1nm, 427nmAr+ Laser(氩离子激光器)488nm, 514.5nm, 351. ...
φ1的光子,跃迁至中间亚稳态E1能级,若光子的振动能量恰好与E1能级及更高激发态能级E2的能量间隔匹配,那么E1能级上的该离子通过吸收光子能量而跃迁至E2能级,从而形成双光子吸收,只要高能级上粒子数量够多,形成粒子数反转,那么就可以实现较高频率的激光发射,出现上转换发光。b 能量传递过程ETU能量传递是指通过非辐射过程将两个能量相近的激发态离子A、B耦合,其中A把能量转移给B回到基态,B接受能量而跃迁到更高的能态,从而使B能够从更高的能级发射。c 光子雪崩过程PA光子雪崩过程是激发态吸收和能量传递过程相结合发生的上转换发光。其实要发生上转换发光,发光中心的亚稳态需要较长的能级寿命,光子能在亚稳 ...
是由原子能级跃迁所产生,当原子由基态(低能级)向激发态(高能级)跃迁时,需要从外界吸收一个光子;而当原子由激发态向基态跃迁时,则需要向外界释放一个光子。一个光子的能量:当我们用一个入射光子掠过原子时,就有一定几率使该原子由激发态向基态跃迁,从而释放出一个光子,最终,我们将得到两个光子(入射光子和受激辐射所产生的光子)。并且,原子受激辐射所产生的光子与原入射光的光子是性质全同的,即能量(频率)、偏振、相位都相同。这就是受激辐射的光放大现象,也是激光产生的底层机制。那么,只要我们让足够多的原子受激辐射(从激发态向基态跃迁),不就可以将原入射光放大,从而产生激光了么?虽然原理上是这样,但要产生激光却 ...
参考腔或原子跃迁。Moku:Lab激光锁频/稳频单一仪器集成了波形发生器、示波器、滤波器、PID控制器多仪器功能,包含快速精确扫描和锁定诊断等自动化程序,能快速锁定到误差信号解调后的零交叉点,为激光频率稳定提供了一体化解决方案。「主要特点」信号处理框图使用内部和外部本机振荡器解调信号锯齿波或三角波共振扫描使用内置示波器观测在信号处理过程中不同位置的信号使用“点击-锁定”功能快速锁定到误差信号的任一零交叉点。高达四阶低通IIR无限冲激响应滤波器解调信号可单独配置的高带宽、低带宽PID控制器用于高频、低频反馈使用“范围内扫描锁定“功能观测与扫描电压有关的信号「典型参数」本振频率1 mHz -200 ...
加载到原子的跃迁频率上。内调制稳频内稳频调制一般是在饱和吸收光谱( Saturated Absorption Spectra,SAS)稳频技术的基础上进行,在冷原子实验上所用的光基本上都是和原子跃迁线共振或者近共振的所以基于原子跃迁线的饱和吸收稳频法成为选择。饱和吸收稳频法是利用原子吸收室对激光频率吸收产生吸收凹陷,光电探测器接收后进行光电转换,示波器则显示出功率吸收峰,然后将吸收峰对应的原子频率作为参考频率,之后将激光器频率稳定到参考频率上的稳频方法。而施加调制信号,通过人为地让激光频率以己知的规律在吸收峰附近变化,从而检测出吸收峰的一阶微分(或奇数阶微分)信号,由此可以得到激光中心频率和基 ...
中使用子带间跃迁实现的。这个想法是由R.F. Kazarinov和R.A. Suris在1971年的论文“用超晶格在半导体中放大电磁波的可能性”中提出的。在块状半导体晶体中,电子可能占据两个连续能带中的一个——价带,其中大量填充着低能电子;导带,其中少量填充着高能电子。这两个能带被一个带隙隔开,在这个带隙中没有允许电子占据的状态。传统的半导体激光二极管,当导带中的高能量电子与价带中的空穴重新结合时,通过单个光子发出光。因此,光子的能量以及激光二极管的发射波长由所使用的材料系统的带隙决定。然而,QCL在其光学活性区不使用块半导体材料。相反,它由一系列周期性的不同材料组成的薄层组成,形成一个超晶格 ...
级间的子带间跃迁来实现的。自1994年首次实验演示以来,QCL技术得到了巨大的发展。这些性能水平是结构设计、材料质量和制造技术不断改进的结果[3-5]。目前,它正在成为中红外(中红外)和太赫兹(太赫兹)频率范围内的激光源,并在气体传感、环境监测、医疗诊断、安全和国防[6]中有许多应用。西北大学量子器件中心(CQD)的目标是推进光电技术,从紫外到太赫兹光谱区域。这包括基于III-V半导体的许多不同技术的发展[7,8]。自1997年以来,CQD在量子级联激光器QCL的发展上投入了相当大的努力,特别是在功率、电光转换效率(WPE)、单模操作、调谐和光束质量方面,推动QCL从一个实验室工具成为一个广泛 ...
问特定的原子跃迁,以操纵和冷却原子和离子。通过使用高功率光纤泵浦激光器在 MgO:PPLN 中产生和频,可以轻松实现瓦级功率的冷却激光器。MSFG626可用于冷却铍离子,两个泵浦激光器分别为1051nm和1550nm,然后在MSFG626中结合,产生626nm。使用BBO晶体,这种输出可以在313nm处增加一倍频率至9Be+离子跃迁。类似地,我们的MSHG637已经被用来演示铯原子从1560nm和1077nm冷却到637nm,然后频率加倍到原子跃迁。我们的MSFG 和频晶体系列如下所示。为了实现高效的和频,理想情况下,您希望两束泵浦光束共焦聚焦到 PPLN(即晶体长度与共焦参数的比率为 1), ...
收两个光子而跃迁到高能级的现象。因此反应概率远小于一般的单光子吸收,它的几率正比于光强度的平方。神经元钙成像(calcium imaging)技术的原理就是借助钙离子浓度与神经元活动之间的严格对应关系,利用特殊的荧光染料或者蛋白质荧光探针(钙离子指示剂,calcium indicator),将神经元当中的钙离子浓度通过双光子吸收激发的荧光强度表征出来,从而达到检测神经元活动的目的。美国Meadowlark Optics公司专注于模拟寻找纯相位空间光调制器的设计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全 ...
或 投递简历至: hr@auniontech.com