的相对孔径和视场,为将其控制在适当范围内,以保证整个像面上的优良像质,目前傅氏变换透镜的焦距大多大于 300mm。图1就是一个常用的系统。于是,长焦距的傅氏变换透镜都采用下图2所示的远距型结构。为了同时校正物面像差与光阑像差,采用如下图3所示的对称结构型式。四组元对称远距型透镜的前焦点到后焦点距离可以缩小到 左右。图3显示了双远距对称型和非对称型中的两种结构型式示例,其中透镜(b)为f'=70mm,输人面直径 48mm,频谱面直径5mm。由于频谱面小,像方孔径角达1/1.5。为充分发挥校正像差的潜力,采用非对称结构,末端的弯月形厚透镜可起到以增大像方视场角的作用。图1图2图3这类双远距 ...
阑,底片框为视场光阑。为保证轴外光束的像质,可变光阑的实际位置大致设在摄影物镜的某个空气间隔中。孔径光阑的形状一般为圆形,而视场光阑的形状为圆形或矩形等。摄影物镜的光学成像特性摄影物镜的光学成像特性主要由三个参数决定,即焦距 f' 、相对孔径 D/f' 和视场角 2ω。焦距 f'物镜的焦距决定了物体在接收器上成像的大小。用不同焦距的物镜对同一位置物体进行成像时,焦距越大,所得的像也越大。为满足各种成像要求,物镜焦距值相差很大,短的只有几毫米,长的达数十米。变焦镜头,当其焦距改变时,可以获得不同放大倍率的像。相对孔径 D/f'物镜人瞳的直径与其焦距之比称为物镜的相 ...
处的分划板是视场光阑,目镜往往是渐晕光阑,其大小影响轴外点成像的渐晕系数。若图像接收器不是人眼,而是光电器件(如 CCD 及 CMOS 器件等),则可将它置于实像平面 A'B' 处。望远系统的视觉放大率 Γ 定义为:物体经过望远系统所成的像对人眼张角的正切 ,与人眼直接观察物体时物体对人眼张角的正切 之比。2. 望远物镜的光学成像特性望远物镜的光学参数由焦距 f′、相对孔径 D/f′ 和视场角2ω。来表示。这些参数决定了望远系统的分辨率、像面照度、成像质量和结构尺寸。因此,根据使用要求,正确确定参数并合理选择物镜是十分重要的。(1) 物镜的分辨率 ψ望远物镜的分辨率用极限分辨角 ...
处的分划板是视场光阑,目镜住往是海晕光阑,其大小影响轴外点成像的渐晕系数。而对于测量用显微系统,孔径光阑没在物镜的像方焦平面上,以形成物方远心光路,提高测量精度。若接收器不是人眼,而是光电成像器件(如 CCD 及 CMOS 器件),则可将它置于实像平面 A'B' 处。显微物镜的成像特性影响系统成像特性的主要是显微物镜。显微物镜较为重要的光学参数是数值孔径和倍率,它影响系统的分辨率、像面照度和成像质量。数值孔径定义为显微物镜物方介质的折射率 n 和物方孔径角正弦之乘积,用符号 NA来表示,即(1) 显微物镜的分辨率δ显微物镜的分辨率是以它能够分辨开两点的较小距离δ来表示的,计算公 ...
方焦面上设置视场光阑,它到目镜第①面的距离称目镜的工作距离,不能太短。尤其在测量用显微镜中,此距离应保证近视眼观察时不能因目镜调焦而碰到分划板。由于物镜的高倍放大,目镜只承担很小的光束孔径角,但视场相对较大,因此显微镜目镜属短焦距的小孔径大视场系统,设计时首先应考虑轴外像差,主要是倍率色差、彗差和像散的校正。一、惠更斯目镜惠更斯目镜是观察用生物品微镜中普遍应用的目镜,由二块平面朝向眼睛的平凸透镜相隔一定距离组成,如下图1所示。朝向物镜的那块透镜叫场镜,朝向眼睛的那块透镜叫接目镜。场镜的作用是使由物镜射来的轴外光束折向接目镜,以减小接目镜的口径,也有利于轴外像差的校正。图1通常惠更斯目镜的二块透 ...
和缝扫描、宽视场轻片显微镜成像和多焦成像。这些方法通常达到比点扫描成像快20倍的采集速度,即使它们对活细胞成像不够快,但它们构成了拉曼光谱许多其他应用的合适替代品。在第②种策略中,通过使用不同的拉曼模式来增加拉曼信号的强度,这反过来允许更短的捕获时间。在脑生理病理研究中,与自发拉曼相比,常用三种模式来提高信号强度:非线性拉曼散射技术,如受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS),以及表面增强拉曼散射(SERS)。图1在拉曼散射的非线性模式中,使用多个激光刺激特定的振动跃迁,从而增加信号的强度。简单地说,在SRS中,样品用自发拉曼中的“泵浦”激光照射,并结合较低频率的“斯托克斯” ...
分割效果。宽视场照明和成像检测窄带滤波器可用于拉曼成像。第①个成功的现代仪器采用了干涉滤波器,它可以倾斜以改变通带。随后,声光可调谐滤波器(AOTF)和液晶可调谐滤波器(LCTF)被引入到拉曼成像中,并提供了电子可调谐性。可调滤波器方法已被证明是测量隔离波段较有用的方法。如果只需要几个帧来定义波段,拉曼成像可以相当快。当有许多重叠波段或非线性背景时,许多图像必须以不同的拉曼位移拍摄,时间优势就消失了。需要注意的是,声光滤波器的透射率仅为50%左右,而液晶滤波器的透射率约为20 - 40%。相比之下,电介质滤光片通过80-90%的入射光。这种差异是因为AOTF和LCTF都作用于线偏振光。在大多数 ...
畸变系统的一般像差理论(一)-费马原理和汉密尔顿的特征函数我们将像差函数写成幂级数展开形式,并表明在一个畸变系统中有16种主要的像差类型。我们还将证明畸变主波误差和光线误差之间的联系。本次主要介绍介绍费马原理和汉密尔顿的特征函数。费马原理是几何光学的基本定律之一,它指出:光线从点P传播到点P '必须穿过一条光程长度,该光程长度相对于路径的变化是静止的。根据费马原理,我们可以得出一个重要的结论:对于光学系统中任意两个非共轭点P和P ',都有且只有一条光线通过这两点。如果P和P '是共轭点,这个结论是无效的,因为所有穿过共轭点的光线都具有相同的光程长度。这一结论的理论重要性 ...
像系统的清晰视场为所成像中的一条线,根 据透镜焦距和成像倾角可以计算出成像变形量。通过二级成像原理弥补一级成像的缺陷,利用一级成像在空间上呈现样品实像,然后通过二级成像,在相机的感光芯片上成像。椭偏成像是相机经过光电转换,再进行A/D转换后形成的,图像传感器 中的电信号与接收的光强成正比,因此可以从采集的图像中获取样品的表面形貌和厚度分布。分析椭偏图像时要求原始成像图具有较好的成像质量,因此可以采用连续抓取时间积分法来提高图像的信噪比,以此改善图像的质量。通过采用多样点平均法来降低随机噪声对图像定量分析的影响,提高可靠性。如果您对椭偏仪有兴趣,请访问上海昊量光电的官方网页:https://ww ...
望远镜物镜的视场较小,例如大地测量仪器中的望远镜,视场仅 1~2度;天文望远镜的视场则是以分计的;而一般低倍率的观察用望远镜,视场也只在10 度以下。但物镜的焦距和相对孔径相对较大,这是为保证分辨率和主观亮度所必需的,可认为是长焦距、小视场中等孔径系统。因此,望远镜物镜只需对轴上点校正色差、球差和对近轴点校正彗差,轴外像差可不予考虑,其结构相对比较简单,一般有折射式望远镜物镜、反射式望远镜物镜、折反射式望远镜物镜,这篇文章主要介绍折射式望远镜物镜。这类物镜要达到上述像质要求并无困难,但要求高质量时,要同时校正二级光谱和色球差就相当不易。后者常只能以不同程度地减小相对孔径才能实现。这类物镜常用的 ...
或 投递简历至: hr@auniontech.com