多种材料对激光能量的吸收。这种损伤形式一般适用于连续波(CW)激光器、长脉冲(单脉冲长度≥1 ns)激光器和高重复率的激光器,这些激光器的平均功率可以非常高。介电击穿-当高峰值功率密度的激光器以超过热吸收速率的速度将电子从材料中剥离而导致烧蚀损伤时发生。这种损伤形式一般适用于具有高峰值功率的短脉冲激光器为了说明这些概念,图1-图5举例说明了随时间变化的激光功率密度曲线(红色单线)和材料温度(蓝色双线)。每条曲线显示了高脉冲功率密度如何能立即导致介质击穿,以及在整个激光脉冲周期中材料温度如何升高,从而接近热损伤点。不同的材料有不同的吸收率,不同的热损伤温度,不同的介电击穿等级。图1 连续波激光, ...
都会有一部分光能够从检偏器初涉;对于n型液晶,出射光的强弱还可以由外电场来控制。3、电控双折射效应如果液晶是n型的,不加电场时液晶分子取向是垂面排列,给液晶加上适当的电场,由于是n型液晶,分子长轴转向沿面排列,即垂直于外场方向。若使外场电场强度在一定范围内变化,光轴的倾斜程度也会改变,双折射的异常折射率也会随之改变,由于双折射引起的光偏振态变化和波长有关,在一定外场下,不同波长的折射率不同,这样在白光入射时,透射光的颜色便会随外场的变化而变化。这个现象可以用来进行彩色显示。4、相变效应p型胆甾型液晶在无外电场时呈分子团结构,各个分子团的取向是杂乱的,因此液晶总体呈现乳白色不透明状态。当加上超过 ...
本身未调制的光能到达探测器。因为信号本身只发生在调制频率,因此,只要使用锁相放大器对调制频率进行检测,就能检测出两束光互相作用所产生的信号。锁相放大器使用混频原理,可将输入的电子信号与本地振荡信号混频,并通过低通滤波器滤除并放大。在频谱中,只有十分接近本地振荡器频率的信号才能被放大并检测。而其他频率的光,比如激光本身的重复频率,以及DC背景都会被滤掉。这使得锁相放大器成为泵浦-探测不可或缺的仪器。有关锁相放大器更详细的介绍,可以参考以下文章:锁相放大器的基本原理对于SRS的检测,我们将两束激光的能量差精确的调节到我们想要检测拉曼位移的能量级。然后,我们可以对泵浦光,或者斯托克斯光进行调制。如果 ...
激光功率。激光能量反应激光的发光强度,在激光加工领域是表征激光加工能力大小的关键指标,光斑测量技术可以对光斑的能量分布进行测量和表征。图1.光斑的特征参数图2.激光光束空间传输光斑的测量结果2.透射率与反射率检测技术当前针对不同的检测对象,已经发展出了多种的透射率和反射率的检测方法。但是这些测试方法大多数都是基于光谱分析的测量技术。测量透射率的常见方法包括:单色仪型分光光度计测试方法,干涉型光谱分析系统测量方法,偏光检测分析方法等。反射率测量的常见方法包括:单次反射光谱分析测试方法,多次反射光谱分析测试方法和激光谐振腔测试方法等。光谱测量方法中有很多因素会影响透射率和反射率精度,这些因素主要包 ...
孔径光阑、入射光瞳和出射光瞳在一个光学系统的若干通光孔中,一定有一个光孔起着限制成像光束的作用。在下图所示的系统中,它由两个透镜组及其之间的一个专设光阑Q所组成,一共有三个光孔Q_1, Q_2和Q。在下图中,自物体中心,即轴上点A发出的与光轴成不同角度的三条光线,分别经过三个光孔的边缘,其中经光阑Q边缘Q_1点的光线与光轴的夹角最小,这表明,从A点发出的光束之中,只有比此角小的光线才能通过系统参与成像。所以在这个系统中,光阑Q起着限制成像光束的作用,是系统的孔径光阑。在上图中,我们可以画出孔阑被其前面的镜组Q_1所成的像P_1 PP_2.我们也可以画出光孔Q_2被其前面的镜组所成的像。在所有光 ...
影响会导致回光能力的迅速衰减从而引起较大的测量误差,一般最高只能达到0.1mm 的测量精度;相干测量方法利用光的干涉现象进行测量,测量精度较高,在一些高精度的应用中经常采用这几种方法进行测量.1. 多波长干涉:1977 年,C.R.Tilford 提出了多波长干涉计量技术,和传统的干涉测距也有所不同,多波长干涉测量也不需要导轨,而且不需要进行连续的干涉条纹计数,只需要分析各波长的干涉级小数部分即可准确地解算出被测距离。多波长干涉理论有两个基本思想:一是利用多个单波长组成一列长度不同的合成波长;二是利用不同长度的合成波长,多次进行干涉测量,逐步求解被测距离,逼近被测真值。可以看出,多波长干涉和传 ...
在确定的输入光能量时,阵列温度一般与封装背面的陶瓷温度有一定关系。这一关系中阵列温度与陶瓷温度差值ΔT。阵列对封装背面陶瓷的热阻、电铝热负载以及不同封装的温差等效25W/cm2激光输入的ΔT,相应的取值在DMD数据手册体现。典型的消费级投影系统可在散热陶瓷基底上达到50–55°C。必须将像素温度置于此环境温度以评估最终能到达的峰值温度。临界温度150°C,假设阵列温度50°C,ΔT必须保持在100°C以下。临界关系如下所示。接下来的三张图显示:平均功率密度为25W/cm2时,ΔT高于阵列温度的情况。对于每个脉冲持续时间和峰值功率密度,都有重复率。图 1.像素ΔT,适用于 7.56 μm 像素图 ...
了的拉曼散射光能够给我们提供有关样品的化学成分和结构信息.来自分子的散射光有几种成分:瑞利散射、斯托克斯和反斯托克斯拉曼散射.在分子体系中,这些频率主要是位于分子转动、振动以及电子能级跃迁相关的范围内。散射光沿着所有方向辐射,伴随波长的变化,其偏振方向也有变化。1. 散射光频率不发生改变的散射过程称为瑞利散射,就是Lord Rayleigh用来解释天空之所以呈现为蓝色的那种过程。2. 散射光频率(波长)发生改变的散射过程称为拉曼散射,拉曼光子的能量与入射光子能量相比可以增大,也可以变小, 取决于分子的振动态。3. 斯托克斯和反斯托克斯拉曼散射中,前者散射光子的能量较之入射光子变低(失去能量,波 ...
0%,即入射光能量集中于+1 级(或-1级)衍射光,大大提高了能量利用率。要实现布拉格衍射,光波的入射角必须满足干涉加强的条件,该条件即布拉格方程。若衍射光之间的光程差为其波长的整倍数,即它们同相位,则满足了相干增强的条件,发生布拉格衍射。上式称为布拉格方程。根据该方程,只有当光束的入射角为布拉格角时,各衍射光在声波面上才能达到同相位,发生相干加强,实现布拉格衍射。3,拉曼-奈斯衍射与布拉格衍射的区分标准从外界条件分析,产生拉曼-奈斯衍射的超声波频率小,声光互作用长度短,光波入射方向与声波传播方向垂直,在声光介质的另一端,对称分布着多级衍射光。而产生布拉格衍射的超声波频率大,声光互作用长度长, ...
因此,飞秒激光能在 极短的时间、极小的空间和极端的物理条件下对生物细胞进行作用。飞秒激光在生物方面的应用,飞秒激光在材料科学领域所表现出来的微纳加工和处理优势在生命科学方面同样适用,其在生物体 内所能实现的三维精确微创手术为医学领域的发展提供了新的机会。在对细胞和组织的处理和切除方面,飞秒激光已逐渐成为一个重要的工具,并取得了很多令人振奋的实验结果。飞秒激光亚细胞器手术。为了研究细胞的生长、运动、新陈代谢、有丝分裂、分化和凋亡等行为,需要对细胞内的细胞骨架 或细胞器进行处理,传统的工具由于空间分辨率不高且对细胞损伤较大制约着该领域的发展,飞秒激光 的出现无疑为该领域注入了新的活力。 2006 ...
或 投递简历至: hr@auniontech.com