展示全部
冲展宽称为“模式色散”。在多模光纤中,模式色散引起的脉冲展宽是各种色散因素中影响最严重的一种。并且,传输的模式越多,脉冲展宽也越严重;另外,在多模光纤中,渐变折射率多模光纤由于其自聚焦效应,色散性能得到一定程度的改善,因而其模式色散的脉冲展宽较阶跃折射率光纤的脉冲展宽可减小约两个数量级。图1.光纤色散示意图以多模阶跃折射率光纤为例,对模式色散进行时域分析。在全部传导模中,低阶模几乎与光轴平行传播,传输速度快,最先到达出射端;而高阶模其传输角几乎等于全反射临界角,传播速度最慢,因而最后到达出射端。二、光谱色散在单模光纤与多模光纤中都共同存在的一类色散是“光谱色散”,又称“色度色散”。光谱色散是指 ...
于模式混合和模式色散。要实现成像,多模光纤内窥镜需要依赖传输特性的校准。这可以通过依序激发所有支持的光纤模式,然后使用数字全息或神经网络来记录光学传递函数来实现。可编程的光学元件,如空间光调制器(SLM)预先编码光纤近端的光场,以在光纤远端获得想要的光场分布。这可以在光纤远端面产生聚焦和其它更复杂的光场模式。OTF与光纤的弯曲、波长漂移、温度变化强相关,这意味着需要实时原位校准。但实际上校准很复杂,很难实现实时。相比之下,CFB在分离的纤芯中引导不同的模式。当芯间串扰可以忽略的时候,没有模式混合产生。然而,随机相位变化在邻近纤芯之间发生。这可以使用SLM通过数字光学相位共轭(digital o ...
、材料色散和模式色散之和。由于光子晶体光纤的包层结构独特,其光纤纤芯和包层的折射率差可以很大,从而增大了波导色散对光纤总色散的影响。通过改变光子晶体光纤的结构参数,如空气孔的排布方式、空气孔形状、空气孔半径和空气孔间距等,可以实现所需的色散特性,以满足不同应用场景中的光信号传输、调制和处理要求。5.多芯传输光子晶体光纤的结构相比传统光纤有重要优势,通过灵活排布空气孔,可为光纤的多芯传输[5]提供了可能。光子晶体光纤的优势在于可对不同纤芯中的光信号进行独立的处理和调制,这为光信号的多功能处理和光子器件的集成提供了便利。光子晶体光纤的多芯传输特性提供了多通道传输、低互相干扰、灵活的路由和连接、多模 ...
:多模光纤的模式色散(或称模间色散);由于光纤材料固有的折射率对波长依赖性而产生的波导色散;以及单模光纤中两种不同偏振模式传输速度不同而引起的偏振色散。一、模间色散多模光纤中,即使对同一波长,不同传输模式仍具有不同的群速度,即传播速度不同,由此引起的脉冲展宽,称为“模间色散”。模间色散引起的脉冲展宽是各种色散因素中影响严重的一种。并且,传输的模式越多,脉冲展宽越严重。模间色散是发生在多模光纤和其他波导中的一种信号畸变机制。在多模光纤中,以不同入射角射入光纤的光线都被定义了一条路径或一种模式。由于各个模式的传输路径不同,其传输速度(即群速度)也不同,因此模式间的信号传输到达光纤终端产生了时间差。 ...
时传播,导致模式色散(因为每个“模式”的光以不同的角度进入光纤,它们在不同的时间到达另一端,这种特性称为模式色散。)模色散技术限制了多模光纤的带宽和距离,导致纤芯粗,传输速率低,传输距离短,整体传输性能差。然而,多模光纤具有成本相对较低的优势,通常用于建筑物或地理上相邻的环境。单模光纤只允许一束光传播,因此不表现出模式色散特性。因此,单模光纤具有相应纤芯较细、传输带宽较宽、容量较高、传输距离较远的特点。一、单模光纤单模光纤只有一根(大多数应用中是两根)玻璃纤维,纤芯直径范围为8.3 μm 至10 μm。由于纤芯直径相对较窄,单模光纤只能传输波长为1310nm或1550 nm的光信号,与光器件的 ...
或 投递简历至: hr@auniontech.com