展示全部
短激发波长的自发拉曼散射显微镜尽管有高分辨率,但是其灵敏度不够,成像速度不足。相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)显微镜的灵敏度要高于自发拉曼散射显微镜,但是因为非共振背景的存在,限制了其探测灵敏度。受激拉曼散射(stimulated raman scattering,SRS)于1968年初次观测到,随后在许多光谱研究中得到广泛的应用。在自发拉曼散射中,由于非弹性散射的机理,一束频率为wp的激光束照射样品,生成频率分别为wS和wAS的斯托克斯和反斯托克斯信号。在SRS中,使用两束激光wp和wS同时照射样品。频率差Δw= ...
多聚焦共聚焦拉曼光谱仪的优点由于拉曼散射过程固有的低效率,拉曼显微镜的一个主要技术限制是信号采集时间过长。例如,使用自发拉曼微光谱对生物标本进行化学分析或成像需要几十秒或几分钟的时间。表面增强拉曼散射(SERS)、相干反斯托克斯拉曼散射(CARS)和受激拉曼散射(SRS)被开发用来增强拉曼散射信号,以提高拉曼分析或成像的速度。然而,在SERS中使用金属纳米颗粒对生物应用造成了一些缺点,CARS或SRS通常局限于查询一个振动模式,而不是同时测量标本的全拉曼光谱。在不使用外源标记或纳米颗粒的情况下获得完整的光谱(例如400-2000 cm-1)可以更好地了解样品中的化学成分和分子结构。为了提高自发 ...
RS相同。与自发拉曼散射不同,在自发拉曼散射中,样品被一个激发场照亮,SRS中两个激发场在泵浦频率ωp和斯托克斯频率ωs处重合在样品上。如果激发束的差频Δω = ωp−ωs与焦点内分子的振动频率Ω相匹配,即分子跃迁由于分子跃迁的刺激激发,速率提高。分子居群从基态通过虚态转移到分子的振动激发态(图1A)。这与自发拉曼散射相反,自发拉曼散射从虚态到振动激发态的转变是自发的,导致信号弱得多。图1.受激拉曼散射原理(A) SRS的能量图。泵浦和斯托克斯束的共同作用通过虚态有效地将样品中的分子从基态转移到第一振动激发态。被激发的振动状态可以通过调节泵和斯托克斯梁之间的频率差来选择。(B) SRS作为能量 ...
信号的真伪与自发拉曼散射相比,CRS技术可以产生更强的振动敏感信号。CRS技术在光学显微镜中的普及与这些大大提高的信号水平密切相关,这使CRS显微镜的快速扫描能力成为可能。然而,除了更强的振动信号之外,相干拉曼相互作用还提供了丰富的探测机制,用于检查各种各样的分子特性。一般来说,CRS技术比自发拉曼技术对介质的拉曼响应提供了更详细的控制。所以在实际搭建相干拉曼系统时,会有诸多问题。当第①次构建CARS或SRS显微镜时,很难确定PMT或锁相放大器探测器上观察到的信号的来源。然而,可以使用一个简短的检查表来验证信号的身份。通常情况下,应使用强谐振样品(例如,两个盖卡片之间的一层薄十二烷),并对样品 ...
或 投递简历至: hr@auniontech.com