过谐振腔,由激发态跃迁回基态,释放能量,形成稳定的激光输出,但工作介质中的原子受到激励源激发后使处在高能级的原子数数目必须大于低能级上的原子数数目,这样增益大于损耗,才能使光的在谐振腔中不断得到增强产生较强的激光。因此合适的激光工作介质和激励源是激光器必不可少的组成部分。不同的工作物质的激发光源波段各异,如今的激光工作介质有固液气和半导体在内的几千种,并涵盖了从真空紫外到远红外的波段,按波段划分的激光器种类大致如下表:激光器波段(λ)常用工作介质远红外激光器25~1000μm自由电子激光器中红外激光器2.5~25μmCO分子气体激光器(5~6μm)近红外激光器750nm~2500nm掺钕固体激 ...
分子)的相关激发态之间产生一个状态。这种诱导状态,通常被称为虚拟态(在量子光学中也称为修饰状态)。这种状态确实存在,但前提是光场开启。使用激光脉冲时,虚拟状态寿命由脉冲持续时间决定。直观上,第一个光子诱导电子从基态跃迁到虚拟态,第二个光子诱导跃迁到激发态。双光子吸收过程在多光子光学显微镜和多光子光学光刻中至关重要,这两种应用都已商业化多年。多光子光学光刻已成为制造从纳米级到微米级的三维(3D)结构的成熟方法。在3D光学光刻(也称为直接激光写入或 3D 激光纳米打印)中,双光子吸收导致光引发剂跃迁率的缩放,因此曝光剂量与光强度的平方成正比。至关重要的是,这种二次非线性抑制了衍射极限激光焦点不可避 ...
光分子需要在激发态进行自发辐射发出荧光,因此激发态是亮态,STED中采用荧光分子的基态作为暗态。强制使得荧光分子处于暗态的机制采用受激辐射。当激发光光斑内的荧光分子吸收了激发光处于激发态后,用另一束STED光束照射样品,使损耗光斑范围内的分子以受激辐射的方式回到基态,从而失去发射荧光的能力。即荧光萃灭。这个过程就叫做受激发射损耗。只有损耗光强为零或较低的区域内的荧光分子能够以自发辐射的形式回到激态发出荧光,这样就实现了有效发光面积的减小。为了实现上述目的,损耗光聚焦后的光斑需要满足边缘光强较大,而中心趋于零的条件,一般采用的是环形的空心光斑,如图2所示。图2. 激发光斑(a),涡旋光(b),强 ...
于单光子源的激发态寿命。当将发光信号分成两束,采用两个检测器同时探测,每个光子只能被其中一个检测器探测到。即在同一时刻仅有一个检测器可以探测到光子。反聚束效应会导致两个探测器的信号在很短的延迟时间内呈现反相关(HBT实验)。“光子反聚束测试功能和常见的利用机械位移平台的mapping方式相比,采用扫描振镜的mapping方式无需样品发生任何位移,通过光斑在视场内的nm级位移来实现样品的成像。这种方式可以方便的和磁场,低温,CVD等其他设备结合在一起,实现“绝对”的原位测试,避免位移平台本身重复精度累积带来的成像扭曲和定位偏差。而全新推出的光子反聚束测量模块,在原本拉曼光谱、荧光寿命、光电流成像 ...
,因此不存在激发态吸收 (ESA) 的风险,并且可能降低了能量迁移的风险,从而允许更高的掺杂水平。然而,对于更高的掺杂水平和更高的反转,似乎存在一些尚未完全了解的非辐射复合通道。与其他稀土离子相比,与主体材料晶格的强耦合以及由此产生的相对较宽的吸收和发射线使激光二极管阵列的泵浦更容易,并允许将激光发射调谐到几十纳米或实现脉冲宽度在100 fs到1 ps的范围内调谐,具体取决于主晶体和锁模类型。缺点是峰截面减小。具有特别强的电子-声子耦合的主体通常也表现出相对较低的热导率,这使得脉冲持续时间小于100 fs的激光器的功率缩放更具挑战性。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上 ...
历振动弛豫到激发态的最低振动水平(记为S1),这是一种称为内转换的非辐射过程。从S1电子态,分子通过辐射或非辐射过程回到基态。图1表示了在这些能级中发生的不同发光现象。荧光是分子(荧光团)通过发射可检测的光子(时间尺度为)衰减到基态的辐射过程。荧光发射发生在激发电子能级最低的位置(S1)。这种来自最低激发电子能级的强制发射确保了发射光谱保持不变,并且与激发波长无关。由于振动弛豫和内部转换中的能量损失,发射的荧光光子的能量较低(即发射发生在比激发更长的波长)。这种发射波长的位移称为斯托克斯位移。另一个主要发光过程,磷光,通过被称为系统间交叉(ISC)的过程发生在激发时电子能量跃迁到三元态能级(T ...
到分子的振动激发态(图1A)。这与自发拉曼散射相反,自发拉曼散射从虚态到振动激发态的转变是自发的,导致信号弱得多。图1.受激拉曼散射原理(A) SRS的能量图。泵浦和斯托克斯束的共同作用通过虚态有效地将样品中的分子从基态转移到第一振动激发态。被激发的振动状态可以通过调节泵和斯托克斯梁之间的频率差来选择。(B) SRS作为能量转移过程。由于分子振动的激励,一个泵浦光子被吸收,一个斯托克斯光子被产生,这分别导致了传输泵浦光束和斯托克斯光束的SRL和SRG。由于分子振动的相干激发(图1B),一个泵浦光子被样品吸收,产生一个斯托克斯光子。这导致传输泵浦和斯托克斯光束强度的损耗(受激拉曼损耗,SRL)和 ...
品处于较高的激发态还是较低的激发态。这被称为拉曼效应。尽管直接吸收需要红外频率来改变振动状态,但在拉曼中,信号相对于原始光源的位移量与振动能量状态的变化相对应。如果激发光源是单色的,拉曼散射信号可以被分散,在称为化学指纹区的频带中显示出尖锐振动峰的频谱。与FTIR相比,拉曼的优势在于它可以使用可见光或近红外光进行,可以通过玻璃窗、显微镜光学和使用标准的硅ccd探测器进行非接触式采样。然而,拉曼散射是二阶效应,相对较弱,因此需要激光源提供可测量的信号强度。与此同时,被样品和系统光学散射的激光比拉曼信号强几个数量级,并产生必须有选择性地阻挡的噪声背景。这限制了早期对拉曼的接受。但固态激光器和二极管 ...
光催化剂进入激发态。它将能量传递给前体元素和分子,从而使反应发生得更快,或者在更低的温度或压力下进行。在这一点上,光催化剂放松回到稳定状态,准备下一个循环。光催化有许多重要的工业、生命科学和科学应用:水分解,一种无污染的方法来生产用于氢燃料电池的清洁氢抗菌和抗病毒领域的空气,表面和水消毒癌症治疗,特别是纳米光催化剂和光氧化还原催化用于对抗缺氧肿瘤合成复杂的,通常是高度功能化的分子,用于开发新的药物和农用化学品支持“循环化学”,追求零浪费的“循环经济”光纤耦合LED为研究和产品开发环境提供了理想的光源。它们紧凑,高效,并提供窄带光谱覆盖范围从UV-A光谱区域到可见光波长(365-600纳米)。N ...
能级:基态、激发态和亚稳单重态(图1)。基态和激发态由自旋三重态组成,可以被an极化。图1.NV中心的能级图。它包含基态和激发态,具有三个自旋亚能级和一个亚稳态。与在室温下容易被光漂白的传统单发射体相比,自旋三重态地面层发出的发光特别有趣,因为弛化过程具有极大的时间稳定性。具有长松弛寿命的NV晶格能量结构中两个缺陷自旋之间的室温量子纠缠可能是量子计算的主要贡献。此外,NV中心与晶格中其余原子之间的弱相互作用确保了高度稳定的发射,这也是与标记生物组织或表面表征(如荧光)相关的应用中非常理想的特性。了解更多详情,请访问上海昊量光电的官方网页:https://www.auniontech.com/t ...
或 投递简历至: hr@auniontech.com