——提供多个荧光团的激发以定位多个细胞目标。2.稳定输出——确保数千个样本的数据质量始终如一。3.电子控制——大规模多路复用分析自动化所需。常用产品型号CELESTA、SOLA、AURA、SPECTRA基因表达分析 Gene Expression Analysis基因表达分析技术是基于高度多路复用测量。其分析性能对于精确度和灵敏度有极高的要求。在目前一种被广泛采用的策略中,分子“条形码”和单分子成像被用来检测和计数单个反应中数百种独特的转录本。经过近十年的实践经验和完善,这项技术今天已成为了一个被广泛采用和验证的平台,基于高于制定的试剂设计、自动化样品处理和精密仪器。Lumencor设计、开发 ...
成像。考虑到荧光团的有限频率响应,选择LO光束的频移将拍频激发频谱外差到基带,以zui大限度利用调制带宽。这是必要的,因为AOD通常在升频的次倍频通带上工作,以避免谐波干扰。用于驱动AOD的射频频率梳的直接数字合成(DDS)定义了每个像素的激发,而这是通过特定的射频和相位决定的,从而导致射频频率梳与检测信号之间的相位相干性。而这种相位相干性可以使用相敏数字锁相放大器的并行阵列使得图像多路分解,这可以在Matlab中实现。FIRE的并行读出将导致zui大像素速率等于AODF的带宽。图2显示了FIRE显微镜的典型输出。检测到的时域信号(图2a)是来自一排像素的射频标记发射的傅里叶叠加。使用短时傅里 ...
要优点包括对荧光团浓度、光致漂白和深度不敏感。此外,荧光寿命对各种环境参数,如氧含量或pH的敏感性,使其成为功能成像的有效工具。且当背景荧光寿命与目标显著不同时,FLIM允许通过门控来抑制背景荧光。时域宽视场FLIM常用的图像传感器技术包括时间门控图像增强器与sCMOS或CCD相机相结合,或微通道板(MCP)和基于光电阴极的宽视场探测器结合。由于增强器的增益较大,时间门控图像增强器的动态范围较低,且成本昂贵。由于涉及的超高电压,MCP在zui大可实现的全局计数率上是很有限的,且实际使用同样昂贵和复杂。标准CMOS技术中单光子雪崩二极管(SPADs)的发展,以及大型CMOS SPAD阵列的引入, ...
白依赖于每个荧光团的光暴露,当全部的光活性区域被吸收时,锥形光纤在更大体积的组织上的光分布允许产生更多的荧光而不增加光漂白。图4 |体内多点光度法揭示了多巴胺对背侧纹状体和腹侧纹状体运动和奖励的不同反应。a,顶部,用于活体光纤光度测定的手术部位和两个部位锥形光纤照明示意图。下面是行为室的示意图。红色区域表示鼠标需要进入盒子的区域来触发容器(蓝色)中的食物颗粒的递送。在奖励交付后,至少需要30秒的时间才能交付另一个奖励。b,来自一只老鼠的光度信号示例。上面,行为时间戳是通过红外光束在容器中测出的。青色,奖赏的容器入口;洋红色,没有奖励的容器入口。中间,动物的中心速度。底部,dLight光度信号。 ...
平的纳米粒子荧光团,旨在观察后者如何影响前者。此外,它们使用DNA配对。更多关于研究由瑞士弗里堡大学Guillermo Pedro Acuna教授ling导的“光子纳米系统”小组博士后研究员María Sanz博士提供。 你对这个设置感兴趣吗?联系我们!Iceblink是一款覆盖450- 2300nm光谱范围的超连续光纤激光器,具有超过3W的平均功率和卓越的稳定性(0.5%标准偏差)。它是一种用途广泛的白光光源,在科学和工业领域有着广泛的应用,典型应用包括材料表征、VIS、NIR和IR光谱、单分子光谱和荧光激发的吸收/透射测量。如果您对面内热导率测试系统 AU-TRSD103感兴趣,请访问上海 ...
部分),两种荧光团会被同时激发。只有波长大于550nm时才能选择性地激发其中的一种,从而获得光谱鉴别。图1. Alexa Flour488和Alexa Fluor 555荧光染料的归一化荧光激发和发射光谱。发射光谱的重叠区域由绿色阴影表示。灰色阴影区域表示图2中用于采集图像A-C的激发带宽(475/28nm)。针对串扰的问题,虽然已经开发出具有窄发射光谱的量子点纳米晶体,可以提供更好的分离光谱。但与有机染料相比,这种改进的代价是荧光团尺寸增加了一个数量级以上,这反过来又阻碍了它们在双分子标记应用中的应用。Lumencor的固态光引擎优化了输出光谱,提供了多个窄线宽的光源,尽可能实现对特定荧光染 ...
Red。这些荧光团被掺入用于确定染色体 13、16、18、21 和 22 的拷贝数的 FISH 探针中,这在多重检测允许同时检测。2.线性光强调制使用SOLA FISH等固态光源时,输出光可通过20倍动态范围的线性控制响应进行电子衰减。当需要调整照明强度以适应样本之间的差异时,通过电子软件控制即可完成,这是可预测和可重复的方式,而无需插入中性密度滤光片等附加光学元件。此外,使用电子衰减时输出光谱也不会受影响。3.设备间的一致性当购买用于多个细胞遗传学检测设备的光源组时,所有光源的性能和操作特性的一致性至关重要。低方差意味着内部数据一致和操作效率。固态光引擎(如 SOLA FISH)显然满足这些 ...
光谱上的不同荧光团来识别DNA中的腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G)碱基,这一直是大多数自动化DNA测序技术的基础。然而,对大规模生物系统的基因组和转录组的研究可能需要同时识别和定位成百上千的分子标靶。这种高度并行的分析超出了基于光谱鉴别的多路复用能力。Lumencor分析了基于光谱鉴别的多路复用荧光检测的局限性,以及为扩大可检测标靶数量而引入的一些固态光源新技术。光谱鉴别的局限性大多数多路复用检测方案都基于光谱鉴别,因为与基于时间或空间鉴别方法相比,它的技术复杂性较低,成本也较低。然而由于光谱串扰,光谱的鉴别方法范围仅限于大约5个目标(图1和图2)。这种局限性主要是由于 ...
2 cm−1荧光团掺杂的苯拉曼带上连续激发的水平进行了比较。当时的激光系统和探测器需要大型、复杂的设备,需要非常精确的设备校准。到1985年,Deffontaine等人正在测试皮秒(ps)时间门控的主动和被动方法,目的是结合同步条纹相机检测和光学Kerrgate来提高信噪比;然而,他们注意到这种方法的适用性有限。同年,Watanabe等人利用快速门通PMT-MCP排列和570nm ps脉冲激光,在31 ps的超短TG窗口中证明了乙醇掺杂罗丹明6 G的荧光抑制。一年后,1986年,Everall等人和Howard等人分别证明,使用ps脉冲激光系统,在TG模式下检测MCP时,来自染料(rubren ...
辐射光子激发荧光团分子,这在飞秒内发生;(ii)在大约相同的时间框架内,由于振动松弛而发生非辐射内部转换过程;(iii)可检测的荧光发射在更慢的时间框架内发生,即大约在皮秒到纳秒尺度上,这取决于样品。RS中TG原理的主要目的是在测量过程中抑制样品诱导的荧光和磷光,并保持足够高的信噪比(SNR),同时抑制其他潜在的连续干扰,如环境光和热辐射。如式(2)所示,可以通过调整时间门的宽度和位置来zui大化信噪比,而(N)分别是拉曼、荧光和探测器暗计数率的散射分子数密度。拉曼和荧光光子在信噪比方面的关系似乎很明显。虽然拉曼散射的寿命很短,但荧光过程涉及具有有限可测量寿命的真实电子激发态;因此,拉曼和荧光 ...
或 投递简历至: hr@auniontech.com